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Optical modulation i s f undamental t o photonics and optoelectronics, yet conventional modulators are

often constrained by their physical size and operational efficiency. Two-dimensional (2D) materials, owing

to t heir exceptional properties, offer compelling prospects f or developing compact and efficient optical

modulators. This study i ntroduces a nanoscale polariton phase modulator utilizing a graphene/α-MoO3

van der Waals heterostructure. By hybridizing surface plasmon polaritons i n graphene with phonon polari-

tons i n α-MoO3, we r ealize a hybridized plasmon–phonon polariton ( HPPP) mode. Chemical doping i s

employed to modulate the carrier concentration i n graphene, which i n turn i nduces a continuous topolo-

gical transformation of the HPPP i sofrequency contours i n momentum space from hyperbolic to elliptical.

This t ransformation directly alters t he HPPP t ransmission wave vectors, enabling effective phase modu-

lation within t he heterostructure. Scanning near-field optical microscopy measurements r eveal t hat t he

phase shift of the HPPP mode can be precisely controlled from 0 to π by varying the Fermi energy of gra-

phene between 0.2 and 0.7 eV. Furthermore, the phase modulation effect i s frequency-dependent, exhi-

biting robust controllability across the l ower Reststrahlen band of α-MoO3. This HPPP modulation scheme

based on t he graphene/α-MoO3 heterostructure presents a novel t echnological pathway f or creating

ultra-compact o ptical modulators, h olding s ignificant p otential f or s ubwavelength-scale optical

manipulation.

Introduction

Optical modulation i s a cornerstone of modern photonics and
optoelectronics, u nderpinning d iverse a pplications s uch a s
wavefront manipulation,1 optical s ignal processing,2 phased
arrays,3 modulators,4 and sensors.5 While mature platforms—
such a s s ilicon p hotonics,6 l ithium n iobate,7 I II–V s emi-
conductors,8 and plasmonic waveguides9—have advanced t he

field, the i ntegration of optical and electronic components i s
still f undamentally c onstrained b y t he d iffraction l imit.10

Conventional m odulators, o ften s panning h undreds o f
microns to millimeters, are considerably larger than nanoscale
electronic devices. This pronounced size mismatch highlights
the pressing need for miniaturized modulators that offer com-
pactness, h igh e fficiency, a nd l ow p ower c onsumption,
thereby p aving t he way f or n ext-generation o ptoelectronic
integration.

Polaritons, which a re hybrid l ight–matter q uasiparticles,
facilitate l ight confinement far below the diffraction l imit,11,12

presenting a promising avenue f or nanoscale optical control.
Among v arious p olaritonic s ystems, t wo-dimensional ( 2D)
materials are particularly appealing due t o t heir atomic-scale
thickness,13 t unable band structures,14 and compatibility with
van der Waals heterostructures.15,16 These attributes result i n
polaritons c haracterized by s trong f ield c onfinement, broad
bandwidth,17 long propagation lengths,18 and the potential for
electrical control,19 rendering them exceptional candidates for
nanophotonic integration.20–22

In such platforms, graphene/α-MoO3 heterostructures offer
distinct advantages stemming f rom t heir distinctive coupling
characteristics. Graphene hosts b roadband, t unable s urface
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plasmon p olaritons ( SPPs),23 whereas α -MoO3, a n aturally
hyperbolic a nd a nisotropic v an der Waals c rystal, s upports
low-loss, d  irectionally p  ropagating p  honon p  olaritons
(PhPs).24 T he s ynergistic c oupling b etween t hese materials
gives rise t o t he f ormation of hybrid plasmon–phonon polari-
tons ( HPPPs) endowed with high t unability, l ong propagation
distance, s trong a nisotropy, a nd c ontrollable d ispersion
topology,25–29 t hereby p roviding a n e xcellent p latform f or
polariton modulation. However, the development of nanoscale
phase modulators based on t opological t ransitions of t hese
HPPPs has remained largely unexplored.

Building upon this foundation, we demonstrate a nanoscale
polariton phase modulator using a graphene/α-MoO3 hetero-
structure. This device e nables a ctive a nd broadband phase
control by manipulating t he t opological t ransitions of HPPPs,
achieved t hrough chemical t uning of graphene Fermi energy.
Specifically, by adjusting t he graphene Fermi energy f rom 0.2
to 0.7 eV, we i nduce a continuous transformation of the HPPP
isofrequency contours f rom hyperbolic t o t he elliptical shape.
This t ransformation e nables p recise t uning o f t he t rans-
mission wave v ector and t he e ffective phase of PhPs i n t he
heterostructure. S  canning n  ear-field o  ptical m  icroscopy
(s-SNOM) measurements v alidate t hese f indings, r evealing a
continuous HPPP phase shift from 0 to π, with robust controll-
ability a cross t he l ower Reststrahlen band o f α -MoO3. This
work e stablishes a new platform f or ultra-compact, t unable
optical modulators with s trong potential f or s ubwavelength
optical signal processing.

Results and discussion

Fig. 1(a) i llustrates t he proposed s tructure, which f eatures a
260 nm t hick α-MoO3 l ayer t ransferred on a gold substrate. A
resonant Au antenna i s f abricated on t he α-MoO3 s urface t o
facilitate t he e xcitation of polaritons. This s tudy s pecifically
investigates t he phenomena within Reststrahlen band I I o f
α-MoO3, covering the frequency range of 816–976 cm−1. In this
spectral r egion, t he dielectric t ensor c omponents of natural
α-MoO3 satisfy t he conditions εx < 0, εy > 0, and εz > 0, which
underpin t he i n-plane h yperbolic b ehavior o f t he p honon
polaritons ( PhPs).30,31 To a chieve phase modulation, a g ra-
phene r ibbon, f abricated b y e lectron b eam l ithography, i s
aligned a long t he y -direction ( [001] c rystal direction) within
the α-MoO3 layer, serving as the modulation region. In this gra-
phene/α-MoO3 h eterostructure, s urface p lasmon p olaritons
(SPPs) in graphene couple with the PhPs in α-MoO3, forming a
hybrid plasmon–phonon polariton mode. Since t he SPPs i n
graphene are highly sensitive t o t he Fermi energy, t he HPPPs
can be dynamically t uned by a djusting t he c arrier c oncen-
tration i n t he monolayer g raphene r ibbon, a llowing precise
control o ver t he t ransmission phase. F ig. 1 (b a nd c ) s how
simulated e lectric f ield d istributions f or g raphene F ermi
energy of 0 eV and 0.7 eV, respectively. As the polaritons propa-
gate t hrough t he g raphene/α-MoO3 h eterostructure modu-
lation r egion, a significant phase shift i n t he HPPP mode i s
observed. This phase modulation i s f urther confirmed by t he
third-order n ear-field o ptical measurements ( S3) s hown i n

Fig. 1 P  olariton phase modulation based on t he graphene/α-MoO3 heterostructure. ( a) Schematic i llustration of t he graphene/α-MoO3 structure.
An Au antenna i s on the surface to excite polaritons. (b and c) Electric field i ntensity distribution along the x-axis (Ez) at an i ncident l ight frequency of
893 cm−1, with graphene Fermi energies of 0 eV and 0.7 eV, respectively. (d) The corresponding simulated near-field third-order optical signal along
the x-axis at 893 cm−1, with Fermi energies of 0 eV and 0.7 eV, respectively. ( e) Calculated HPPP i sofrequency contours f or the graphene/α-MoO3

heterostructure on the Au substrate at 893 cm−1. Here, kx and ky represent the wave vectors of the polariton along the x ( [100]) and y ( [001]) crystal
directions of α-MoO3, respectively, and k0 i s the wave vector of l ight i n f ree space. ( f ) Ratio of t he polariton wave vector along t he x direction of
α-MoO3 to the i ncident l ight wave vector.
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Fig. 1(d). After traversing a 1.5 μm long modulation region, the
PhP phase experiences a delay of approximately 0.6π.

To further elucidate the dynamic control mechanism of the
in-plane HPPP dispersion contour t opology i n t he graphene/
α-MoO3 h eterostructure, w e p resent t he i sofrequency d is-
persion contours ( IFCs) f or different graphene Fermi energies
at a fixed i ncident wavelength of λ0 = 11.20 μm ( 893 cm−1), as
shown i n Fig. 1(e). The calculation method i s detailed i n t he
Methods s ection. I n t he a bsence of g raphene, t he i n-plane
PhPs i n α -MoO3 e xhibit h yperbolic I FCs, i ndicating t he
absence of propagation modes along t he y-axis ( [001] crystal
direction). At l ower graphene Fermi energies, the HPPP i n t he
graphene/α-MoO3 heterostructure i s primarily governed by the
PhPs of α-MoO3, with t he I FCs r etaining a hyperbolic mor-
phology. As the graphene Fermi energy increases to 0.7 eV, the
HPPPs t ransition f rom being PhP dominated t o S PP domi-
nated. Concomitantly, as the dielectric environment i s altered
by t he changing graphene Fermi energy, t he SPP wavelength
shifts. This shift causes t he opening angle of t he hyperbolic
IFCs t o gradually expand, c ulminating i n a t opological t ran-
sition f rom a n o pen ( hyperbolic) t o a c losed ( elliptical)
geometry.

Additionally, we analyze t he v ariation t rend of t he HPPP
wavelength c ompression r atio k x/k0 a long t he p ropagation
direction i n α-MoO3 ( x-direction), as shown i n Fig. 1(f ). As the
Fermi energy is elevated, graphene SPPs increasingly dominate
the HPPP c haracteristics i n t he g raphene/α-MoO3 h etero-
structure. Consequently, the wavefront becomes more sensitive
to F ermi e nergy v ariations. Moreover, with i ncreasing g ra-
phene Fermi energies, t he kx/k0 of t he HPPP exhibits a mono-
tonic decline, i ndicating progressive e longation of polariton
wavelengths.25 T his p henomenon p rovides a n a dditional
degree of f reedom f or dynamically c ontrolling t he polariton
propagation and phase.

To validate t he phase modulation effect, we designed and
fabricated t he corresponding heterostructure, as i llustrated i n
the s chematic o f F ig. 2 (a). T he p ropagation o f p olaritons
within t he g raphene/α-MoO3 h eterostructure w as d irectly
observed u  sing s  canning n  ear-field o  ptical m  icroscopy
(s-SNOM). Under p-polarized i nfrared i llumination, nanoscale
localized f ields generated at both ends of t he r esonant gold
antenna efficiently excite t he HPPP mode. This excitation pro-
duces detectable polariton wavefronts within t he modulation
region. During s-SNOM sample scanning, both the real part of
the s cattered electric f ield and t he s urface morphology were
simultaneously recorded, enabling direct measurement of t he
vertical near-field component of the HPPP wavefront excited by
the g old a ntenna. Fig. 2 (b) displays t he optical microscopy
image of t he f abricated sample, with additional details avail-
able i n ESI Fig. S1.† Moreover, t he AFM i mage obtained via
s-SNOM, s hown i n Fig. 2(c), c onfirms t he height uniformity
and surface cleanliness of t he graphene ribbon. This demon-
strates superior s ample quality f or t he ensuing experimental
analysis.

Using chemical vapor doping for Fermi-level engineering in
graphene, we systematically i nvestigated hyperbolic plasmon-
polaritons i n t he h eterostructure a cross a t unable F ermi
energy r ange of EF = 0.2–0.7 eV. This i nvestigation was con-
ducted u sing s cattering-type n ear-field o ptical microscopy
(s-SNOM). A s d epicted i n F ig. 2 (d)–(f ) ( with t he c omplete
dataset i n ESI Fig. S2†), t he r eal-space nanoimaging r eveals
that polariton propagation c haracteristics a re modulated by
doping, governed by variations i n carrier density. The experi-
mental results i ndicate t hat at l ow doping l evels ( EF = 0.2 eV),
the phase modulation effect i s l ess pronounced. At t his l ow
Fermi e nergy, t he HPPP i s predominantly g overned by t he
PhPs of α-MoO3, exhibiting a hyperbolic wavefront with negli-
gible i nfluence f rom t he surrounding dielectric environment.

Fig. 2 N  ear-field optical i maging of polariton phase modulation i n t he graphene/α-MoO3 heterostructure. ( a) Schematic i llustration of t he phase
modulation principle, demonstrating a significant phase shift i n t he polariton after passing t hrough t he modulation region. Einc and Esca represent
the i ncident and scattering electromagnetic waves, r espectively. ( b and c) Optical microscopy and atomic f orce microscopy ( AFM) i mages of t he
device, composed of a gold antenna, thin-layer α-MoO3, and monolayer graphene, with a scale bar of 3 μm. ( d–f ) Experimentally measured near-
field third-order optical signals along the x-direction at graphene Fermi energies of 0.2 eV, 0.6 eV, and 0.7 eV, respectively. ( g–i) The corresponding
numerically simulated electric field i ntensity distribution (Ez). The white scale bar corresponds to 3 μm.
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When t he Fermi energy of graphene i ncreases t o 0.6 eV, t he
HPPP i n t he g raphene/α-MoO3 modulation r egion becomes
dominated by t he SPPs of graphene. This results i n progress-
ively more developed elliptical wavefront features. Under these
conditions, the phase of the polaritons undergoes a significant
shift after passing t hrough t he graphene/α-MoO3 modulation
region. Upon further increasing the Fermi energy to 0.7 eV, the
elliptical wavefront o f t he HPPP b ecomes e ven more p ro-
nounced, the wavelength i ncreases, and the phase modulation
effect i s consequently enhanced. Fig. 2(g–i) display t he simu-
lated near-field mode i mages corresponding t o t hese experi-
mental r esults, which closely match t he experimental obser-
vations, t hereby validating t he r eliability of our experimental
methodology. I t i s i mportant t o note t hat t he phase modu-
lation arises f rom t he t uning of t he Fermi energy of graphene
within the graphene/α-MoO3 heterostructure, rather than from
the α-MoO3 flake alone (ESI Fig. S3†).

From the experimental and simulated images in Fig. 2(d–i),
we quantitatively extracted the third-order near-field signal (S3)
of t he PhPs i n graphene/α-MoO3 heterostructures, comparing
unmodulated r egions ( dark-purple d ashed c ontours) w ith
modulated z ones ( light-purple, p ink, a nd r ed d ashed c on-
tours). Detailed analysis protocols are provided in ESI Fig. S4.†
Crucially, systematic Fermi energy tuning of graphene demon-
strates a negligible i mpact on t he i ntrinsic PhP wavelength
within α-MoO3 unmodulated areas, establishing t hese regions
as phase r eference benchmarks. This calibration enables t he
precise d etermination o f a ctive modulation-induced p hase
shifts, which a re g raphically r epresented by v ertical dashed
guide l ines i n Fig. 3(a). As shown i n Fig. 3(a), t he modulated
phase difference modulation exhibits a proportional i ncrease
with t he i ncrease i n t he graphene Fermi energy. To e xplain
this phenomenon, we propose a s imple optical path l ength
model t o describe t he phase modulation mechanism of t he
graphene/α-MoO3 heterostructure. This model provides theore-
tical g uidance f or d esigning s uch p hase modulators. T he

phase s hifts f or d ifferent F ermi e nergies a re s hown i n
Fig. 3(b). For PhPs propagating t hrough t he graphene/α-MoO3

modulation region, the phase shift can be expressed as:

Δφ ¼ 2π
ðL0
0

n� n0
λ0     

dL ð1Þ

where L0 denotes t he l ength of t he graphene/α-MoO3 modu-
lation region; λ0 and n0 represent the wavelength and refractive
index of t he PhPs i n t he r eference r egion without graphene,
respectively; a nd n i s t he r efractive i ndex i n t he g raphene/
α-MoO3 modulation region, which can be calculated using n =
kx/k0. Therefore, by varying the graphene Fermi energy ( i.e., i ts
doping l evel) t o control t he wave v ector, t he r efractive i ndex
can be changed. Based on existing research, common methods
for d oping t he g raphene F ermi e nergy i nclude e lectrical
doping, van der Waals heterostructure doping, and chemical
doping. Electrical doping19 enables dynamic control but t ypi-
cally s truggles t o a chieve high doping l evels, while v an der
Waals heterostructure doping32,33 often l acks i n situ tunability.
Consequently, we adopt c hemical doping with NO2,

34 where
the doping status variation enables dynamic modification of
the graphene Fermi energy.

Using eqn ( 1), we calculated t he r efractive i ndex variation
within t he graphene/α-MoO3 modulation region as a f unction
of t he F ermi e nergy. This c alculation was based o n phase
difference r esults f rom b oth e xperiments a nd s imulations,
conducted at a fixed incident l ight frequency of 893 cm−1. The
results of t his calculation are shown i n Fig. 3(c) which reveals
the refractive i ndex shift. As graphene Fermi energy i ncreases,
the refractive i ndex gradually reduces. This reduction l eads t o
a s hortened optical path l ength, c onsequently i nducing t he
observed phase difference shifts. While t his i ndicates a posi-
tive correlation between i ncreasing Fermi energy and i ncreas-
ing p hase s hift ( due t o d ecreasing r efractive i ndex), t he
relationship i s not s trictly l inear. I nstead, i t originates f rom

Fig. 3 P  olariton phase s hift and effective r efractive i ndex analysis based on t he graphene/α-MoO3 heterostructure. ( a) Experimental near-field
third-order optical signal ( S3) profiles of polaritons along the x-direction. These profiles are extracted along the central horizontal dashed l ines i ndi-
cated i n the experimental i mages of Fig. 2(d–f ) for different graphene Fermi energies. The vertical dashed l ines i n this panel serve as visual guides,
with the set of l ines for the EF = 0 eV case ( representing the reference or unmodulated region) i llustrating a characteristic polariton wavelength for
comparison. All experimental results were obtained from i n situ samples. ( b) Polariton phase shift plotted against graphene Fermi energy. This panel
includes both experimental data ( blue squares), extracted f rom t he measurements shown i n Fig. 2(d–f ), and simulated data ( red circles), derived
from simulations corresponding to Fig. 2(g–i). ( c) Effective refractive i ndex ( n) within the graphene/α-MoO3 heterostructure modulation region as a
function of graphene Fermi energy. Both experimental (blue squares) and simulated (red circles) values are presented.
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the m  ore i  ntricate c  oupling b  etween g  raphene a  nd
α-MoO3.

25–29 The experimentally observed t rend of r efractive
index variation observed i n experiments i s consistent with the
trend of kx/k0 (Fig. 1(f )). This consistency provides intuitive evi-
dence supporting the proposed modulation mechanism.

It is worth emphasizing that the optical path is defined by L
= nL0. Thus, for a fixed refractive index, the optical path l ength
inherently depends on t he s patial l ength of t he modulation
region. Consequently, i ncreasing t he width of t he graphene
ribbon l eads t o a p roportional e nhancement i n t he p hase
modulation efficacy, t hereby enabling i mproved phase modu-
lation amplitude for identical variations in the graphene Fermi
energy. This fundamental relationship establishes a key design
strategy f or optimizing phase modulators based on graphene/
α-MoO3 heterostructures.

Given t he strong f requency dependence of t he relative per-
mittivity o f b oth α -MoO3 a nd g raphene, we s ystematically
investigate t he polaritonic phase s hift after passing t hrough
the graphene/α-MoO3 modulation r egion under v arying exci-
tation f requencies. E xperiments a re c onducted a t i ncident
light f requencies o f 9 00 c m−1 a   nd 9 05 c m−1. T he c orres-
ponding experimental and simulated near-field optical i mages
are provided i n ESI Fig. S5.† The extracted experimental third-
order electric f ield i ntensity f or t hese f requencies i s shown i n
Fig. 4(a) and (b). These results reveal that as the i ncident l ight
frequency i ncreases, the refractive i ndex variation of the HPPP
in t he high-frequency r ange exhibits a s ubstantially stronger
dependence o n t he g raphene F ermi e nergy. This, i n t urn,
leads t o an enhanced phase s hift. This phenomenon under-
scores t he f requency dependence of HPPP phase modulation,
thereby e nabling more f lexible phase c ontrol by t uning t he
incident light frequency.

By l everaging t he l ong l ifetime o f phonon polaritons i n
α-MoO3 and t he dynamic t unability of SPPs i n graphene, we
successfully achieve phase modulation of PhPs over a broad
frequency range. This characteristic highlights t he broadband
spectral tunability of our proposed scheme, providing new pos-
sibilities f or multi-band p hase manipulation. Notably, t he

i  nherent c hallenge i n directly c ontrolling phonon polaritons
n  ecessitates obtaining substantially high Fermi energy i n gra-
p  hene t o r ealize s ignificant HPPP phase modulation. Future
i  mplementations could i ncorporate high-efficiency SPP modu-
l        ation materials s uch a s b lack p hosphorus35,36 t o f urther
e  nhance PhP manipulation capabilities. This strategy is antici-
p  ated t o a dvance m ulti-dimensional s ubwavelength-scale
s  ensing and on-chip optical manipulation, t hereby presenting
i  nnovative approaches f or t he design of ultra-compact photo-
n  ic devices.

Conclusions

In conclusion, t his study presents and experimentally demon-
strates a graphene/α-MoO3 heterostructure-based scheme. This
scheme l everages t he h ybridized c oupling b etween s urface
plasmon polaritons (SPPs) in graphene and phonon polaritons
(PhPs) i n α -MoO3 t o f orm a d istinctive h ybrid p lasmon–
phonon p olariton ( HPPP) mode. B y i ntegrating t he p ro-
nounced i n-plane a nisotropic propagation c haracteristics o f
PhPs i n α-MoO3 with t he carrier density-dependent t unability
of graphene’s SPPs, this hybrid configuration enables effective
in s itu p hase c ontrol o f t he HPPP. T hrough g as-doping-
mediated a djustment of t he c arrier c oncentration i n mono-
layer graphene, we have s hown t hat t he HPPP t ransmission
mode undergoes a controllable t opological t ransition between
hyperbolic and e lliptical dispersion r egimes. This t ransition
facilitates continuous phase modulation of the HPPP spanning
the 0–π range. The proposed HPPP-based modulation principle
is not l imited t o t his specific system and can be extended t o
other Reststrahlen bands o f α -MoO3 a nd o ther t wo-dimen-
sional ( 2D) materials, such as hexagonal boron nitride ( h-BN).
This work shows promising potential f or t he development of
ultra-compact optical modulators,37 biosensors,3              4 a  nd r elated
applications, o ffering a n ew p aradigm f or c reating h igh-
efficiency i ntegrated nanophotonic devices f or subwavelength
optical manipulation.

Fig. 4 Polariton phase shifts at different i ncident l ight frequencies. ( a and b) Experimental ( circles) and simulated ( solid l ines) near-field third-order
optical signal (S3) profiles of polaritons along the x-direction for i ncident l ight frequencies of 900 cm−1 (a) and 905 cm−1 (  b), respectively. Each panel
displays profiles f or various graphene Fermi energies ( EF: 0 eV, 0.2 eV, 0.6 eV, and 0.7 eV), i llustrating the phase shifts that are dependent on both
incident f requency and EF. ( c) Extracted polariton phase shift as a f unction of graphene Fermi energy f or t hree distinct i ncident l ight f requencies:
893 cm−1 (blue curve), 900 cm−1 (purple curve), and 905 cm−1 (pink curve).
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Methods
Nanofabrication of the devices

In t his study, high-quality α-MoO3 f lakes were exfoliated f rom
bulk crystals grown via chemical vapor deposition (CVD) using
mechanical exfoliation. These flakes were then precisely trans-
ferred o nto a g old s ubstrate u sing p olydimethylsiloxane
(PDMS) f or deterministic dry t ransfer. Monolayer g raphene
was t ransferred u sing a p olymethyl methacrylate ( PMMA)-
assisted method, where graphene was exfoliated f rom a CVD-
grown graphene/copper f oil structure and subsequently t rans-
ferred o nto t he s urface o f α -MoO3 f lakes. T he e mission
efficiency of the resonant antennas i s primarily determined by
the geometry, s ize, and f requency of t he i ncident l ight. We
designed gold antennas with a l ength of 3 μm and a thickness
of 50 nm, optimized t o efficiently excite polaritons within t he
frequency r ange o f 8 90–950 c m−1, c orresponding t o t he
Reststrahlen band II of α-MoO3.

Electron beam l ithography ( Vistec 5000+ES) with a 100 kV
beam was used to define the gold antenna array pattern i n an
approximately 350 nm t hick PMMA950K r esist deposited on
the s elected α -MoO3 f lakes. S ubsequently, a t itanium ( Ti)
adhesion l ayer ( 5 nm) and Au ( 50 nm) were deposited using
electron b eam e vaporation i n a v acuum c hamber u nder
pressure l ower t han 5 × 10−6 t  orr t o f abricate t he gold anten-
nas. Electron beam evaporation was also employed t o deposit
approximately 60 nm of gold on a l ightly doped silicon sub-
strate, which s erved a s t he g old s ubstrate. To r emove a ny
residual organic materials, t he s amples were i mmersed i n a
hot acetone bath at 80 °C f or 25 minutes, f ollowed by gentle
rinsing with i sopropyl a lcohol f or 3 minutes. The s amples
were then dried with nitrogen and baked in an oven.

The s amples were annealed i n a vacuum t o r emove most
residual dopants i ntroduced during t he wet t ransfer process
and t hen t ransferred t o a c hamber f illed with NO2 g as.
Previous s tudies have s hown t hat c hemical doping e nables
reliable modulation of polariton properties, such as f ield con-
finement a nd i n-plane wavelength.38–41 Therefore, we a dopt
chemical doping with NO2, where t he doping status variation
enables dynamic modification of t he graphene Fermi energy.
In t he experiment, t he samples are sealed i n a chamber f illed
with N2 containing 75% NO2 gas for a period of time. The NO2

molecules, acting as electron acceptors, are adsorbed onto the
graphene surface, t hereby i nducing p-type doping. According
to our previous experimental r esults, t he Fermi energy of t he
doped graphene can be determined by analyzing t he Raman
spectra of G peak stiffening, 2D peak stiffening, or t he i nten-
sity r atio I G//I2D.

23,25 Under a constant NO2 gas concentration
of 75%, t he Fermi energy of graphene can be precisely con-
trolled by adjusting t he doping t ime. This c hemical doping
method offers excellent uniformity and stability, ensuring t he
accuracy of t he measured Fermi energy v alues.25 As demon-
strated in our previous work, Raman mapping reveals the high
uniformity of gas-doped graphene, while the Fermi level shows
only a slight decrease from 0.7 to 0.6 eV after two weeks under
ambient c onditions, i ndicating e xcellent d oping s tability.25

Moreover, t he physical adsorption of NO2 molecules enables
reversible doping via vacuum annealing and re-doping.

Scanning near-field optical microscopy measurements

Optical near-field i maging was conducted using a scattering-
type s  canning n  ear-field o  ptical m  icroscope (  s-SNOM,
Neaspec) e quipped with a t unable q uantum c ascade l aser
(890–2000 c m−1) . T he a tomic f orce microscopy ( AFM) t ip,
coated with g old, h ad a r adius o f a pproximately 2 5 n m
(NanoWorld), with the tapping frequency and amplitude set to
around 270 kHz and 30–50 nm, r espectively. The l aser beam
was directed onto t he AFM t ip, with t he l ateral l ight spot size
beneath t he t ip being approximately 25 μm, l arge enough t o
cover b oth t he a ntenna a nd t he g raphene/α-MoO3 s ample.
Third-order harmonic demodulation was applied t o t he near-
field amplitude images for effective background noise suppres-
sion. I n our experiments, p-polarized plane waves were i nci-
dent at 60° relative t o t he t ip axis. To eliminate effects caused
by t he optical anisotropy of α-MoO3 due t o t he polarization
direction relative to the crystal orientation, the in-plane projec-
tion of the polariton vector was aligned with the x-direction of
α-MoO3 ([100] crystal direction).

Calculation of polariton dispersion and IFCs of hybrid
plasmon–phonon polaritons

The t ransfer matrix method i s employed t o analyze t he dis-
persion c haracteristics and I FCs of hybrid plasmon–phonon
polaritons i n graphene-α-MoO3 heterostructures. Our t heore-
tical framework considers a three-layer structure: the first l ayer
(z > 0, air) serves as the cover medium; the second layer (0 > z >
−dh, graphene/α-MoO3) f unctions as t he i ntermediate r egion;
and the third l ayer (z < −dh, Au) represents the substrate. Each
layer is treated as a homogeneous material characterized by its
respective dielectric tensor. The air and the substrate layers are
modeled and described using tensors diag{εa,s}.

42 The α-MoO3

film, in contrast, is modeled by an anisotropic diagonal tensor
diag{εx, εy, εz  }, where εx           , εy  , and ε                      z       c orrespond to the permittiv-
ity c omponents a long t he x , y , a nd z a xes, r espectively.
Additionally, monolayer graphene, positioned atop α-MoO3 at
z = 0, i s r epresented as an i nfinitesimally t hin current l ayer
characterized by a f requency-dependent s urface c onductivity
derived f  rom t  he l  ocal r  andom-phase a  pproximation
model:43,44

σðωÞ ¼
ie2kBT ω þ 1

τ

� �
πh2

EF
kBT

þ 2 l n e � EF
kBT þ 1

� �� �

þ i
e2

4πℏ
ln

2 EFj j � ℏ ωþ i
τ

� �    

2 EFj j þ ℏ ωþ i
τ

� �
2
6  64  

3
7 75 

ðS1Þ

which is i nfluenced by the Fermi energy EF, the i nelastic relax-
ation t ime τ a nd t he t emperature T; t he r elaxation t ime i s
expressed i n t erms of t he graphene Fermi velocity vF = c /300
and t he carrier mobility μ, with τ = μEF/evF

2, where e i s t he
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elementary c harge; k B i s t he Boltzmann c onstant; ħ i s t he
reduced Planck constant; and ω is the illumination frequency.

Given t he strong f ield confinement produced by t he struc-
ture u nder c onsideration, o nly t ransverse magnetic ( TM)
modes are considered, as t ransverse electric ( TE) components
contribute n  egligibly. T  he c  orresponding p  -polarization
Fresnel r eflection c oefficient r p o f t he t hree-layer s ystem
follows the analytical expression:

rp ¼ r12 þ r23ð1� r12 � r21Þei2kz ð2Þdh
1þ r12r23ei2kz

ð2Þdh
; ðS2Þ

r12 ¼ Q1 � Q2 þ SQ1Q2

Q1 þ Q2 þ SQ1Q2
; ðS3Þ

r21 ¼ Q2 � Q1 þ SQ1Q2

Q2 þ Q1 þ SQ1Q2
; ðS4Þ

r23 ¼ Q2 � Q3

Q2 þ Q3
; ðS5Þ

Qj ¼ kzðjÞ

εtðjÞ
; ðS6Þ

S ¼ σZ0
ω

:   ð                    S7Þ

Here, r jk r efers t o t he r eflection coefficient at t he i nterface
between media j and k ( for j , k = 1, 2, 3), while εt

( j ) r  epresents
the i n-plane d ielectric f unction f or a p ropagation w ave
vector kp(θ) (with θ being the angle relative to the x-axis), which
can be expressed as εt

( j ) = εx
(     j ) c  os2    θ + εy

(      j ) s  in2    θ, i n terms of
εx

( j ) and εy
(        j ) (i.e., t he diagonal dielectric t ensor components

of l ayer j a long the x and y a xes, r espectively); k z
ðjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εtðjÞ
ω2

c2
� εtðjÞ

ε  z
ðjÞ q

2

s
is the out-of-plane wave v ector, with εz

( j )

being t he dielectric f unction of l ayer j along t he z-axis and Z0
the vacuum impedance.

The dispersion r elation q ( ω, θ ) i s determined f rom t he
zeros of the denominator of eqn (S2):

1þ r12r2 3e i2kz
ð2Þdh ¼ 0: ðS8Þ

For simplicity, we assume a system with small dissipation,
so t hat t he maxima of I m{rp} approximately s olves t he c on-
dition given by eqn ( S8), and t herefore, produces t he sought-
after dispersion relation q(ω, θ).

Electromagnetic simulations

Numerical m  odeling w  as p  erformed u  sing C  OMSOL
Multiphysics s imulation s oftware. To i mprove c omputational
efficiency, we constructed a streamlined 2D geometric model
through d imensional r eduction o f t he o riginal 3 D h etero-
structure a s depicted i n Fig. 1(a). S cattering boundary c on-
ditions were applied, with α-MoO3 placed on a gold substrate
to enhance wavelength compression and minimize polariton
propagation l oss. A monolayer g raphene r ibbon was p osi-
tioned o n t he α -MoO3 s urface a s t he modulation r egion.
Permittivities o f A u ( wavelength-dependent) a nd α -MoO3

(fitted by the Lorentz model) were obtained from the reference
respectively.45,46 The graphene t hickness was set t o 0.34 nm,
and i ts c onductivity was modeled u sing t he l ocal r andom
phase a pproximation w ith t ransition b oundary c onditions
applied. T he c arrier mobility i n g raphene w as p reset t o
2000 c m2 V−1 s  −1. To e fficiently c ouple t he polaritons, gold
antennas served as the excitation source. These antennas gen-
erated strong counter-phase near-fields at t heir t wo ends, pro-
viding high-momentum near-field components t hat matched
the wave vector of t he polaritons, t hereby exciting t he propa-
gation modes of phonon polaritons in α-MoO3.

47,48 All numeri-
cal i mplementations maintained s trict geometric c orrespon-
dence with experimental configurations t o ensure consistency
between theoretical predictions and experimental observations.
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