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Abstract: van der Waals (vdW) crystals are promising candidates for integrated phase retardation 

applications due to their large optical birefringence. Among the two major types of vdW materials, 

the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the 

supported polaritonic modes are exclusively transverse-magnetic (TM) polarized and relatively lossy. 

Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum 

disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency 

range of optical communication. Both transverse-electric (TE) polarized ordinary and TM polarized 

extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. 

In this work, low-loss transmission of these guided modes is demonstrated with nano-optical imaging 

at the near-infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical 

calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE 

and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the 

MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization 

behavior of photons with vdW materials.  
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Phase retardation elements such as waveplates and compensators are important polarization 

management components that play an essential part in modern optical communication systems.[1,2] 

Anisotropic crystals exhibiting optical birefringence are the fundamental building blocks of these 

bulk components.[3,4] With the advancement of nano-optics in the quantum era, miniaturization and 

integration of these phase retardation components become imperative.[5-7] In analogy with their bulk 

counterparts which introduce path difference between orthogonally polarized light through optical 

birefringence, the integrated optical phase retardation elements import path difference between 

orthogonally polarized guided modes via the modal birefringence of the waveguides.[8] Unlike the 

bulk birefringence which is predefined by the material, the modal birefringence of waveguides are 

tunable with constituent materials and waveguide geometry.[9] However in practice the manufacture 

of integrated phase retarders with designed modal birefringence is particularly challenging because 

of their stringent fabrication tolerance.[10] Therefore, new materials allowing layer-by-layer control 

and fine mechanical processing are highly demanded. 

Due to the difference between their interlayer and intralayer bonding strengths, van der Waals (vdW) 

crystals are both mechanically and optically anisotropic.[11,12] In light of this intrinsic out-of-plane bi-

anisotropy, vdW crystals are promising materials for the phase retardation applications in integrated 

optical circuits: the mechanical anisotropy permits the precise layer-by-layer manufacturing of the 

waveguide structure while the optical anisotropy provides one more degree of freedom to control its 

modal birefringence. vdW crystals with hyperbolic optical responses such as hexagonal boron nitride 

(h-BN)[13,14] and α-phase molybdenum trioxide (α-MoO3)[15,16] have been demonstrated to support 

highly confined phonon polaritons in the mid-infrared (MIR) frequency range. However, these 

polaritonic modes are inherently inadequate for the integrated phase retardation applications 

(polariton-assisted polarization control of far-field light with metasurfaces made of vdW materials is 

possible[17]), as a result of their inevitable transmission loss (imposed by the Kramers-Kronig 

relationships between dispersion and dissipation[18,19]) and the absence of transverse-electric (TE) 

polarized modes.[20,21] An alternative way is to resort to vdW crystals with elliptic anisotropy at 
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frequencies far away from any resonant absorption bands. In such case, the imaginary parts of the 

permittivity tensor are usually negligible and result in positive real parts.[22] The near-zero imaginary 

parts of permittivity guarantee the low-loss transmission of the supported waveguide modes, while 

the positive real parts allow the co-occurrence of TE and transverse-magnetic (TM) polarized modes. 

Transition metal dichalcogenides (TMDs) are expected to exhibit elliptic light dispersion in a broad 

frequency range (note that h-BN is also elliptically anisotropic out of its Reststrahlen bands, the 

reason TMDs are better for our proposed applications will be discussed at a later stage);[23] this elliptic 

anisotropy together with the single-layer precisely modifiable structure[24,25] of TMDs would permit 

fine-tuning of the modal birefringence between TE and TM polarized modes, and thus enable the 

implementation of phase retarders in integrated optical circuits. 

In this work, we choose molybdenum disulfide (MoS2)[26-29] as a representative for TMDs to introduce 

the concept of vdW optical phase retarders. We first show the low-loss transmission of waveguide 

modes in MoS2 in the near-infrared (NIR) frequency range by comparing the near-field imaging 

results between MoS2 and h-BN at the same excitation wavelength λ=1530 nm. We then demonstrate 

that the modal birefringence between the orthogonally polarized ordinary (TE) and extraordinary 

(TM) guided modes can be fine-tuned by varying the thickness of the MoS2 crystal, as a result of its 

extreme out-of-plane elliptic anisotropy (the optical birefringence of MoS2 at 1530 nm is about 1.4,[30] 

much larger than those of common non-vdW crystals and the state-of-the-art barium titanium 

sulfide[31,32]). Functionalities of the proposed vdW zero-order half-wave plates and phase-matched 

waveguide will also be discussed via numerical simulations. 
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Figure 1. Optical nanoimaging of the waveguide modes in MoS2 and h-BN. a) Experimental setup 
for MoS2 NIR nanoimaging. The sharp edges of MoS2 microcrystals are aligned to the y axis and the 
s-SNOM tip scans along the x axis. α is the angle between the illumination wavevector k0 and its 
projection in the x-y plane kxy, β is the angle between kxy and the investigated sample edge. Inset is 
the front view of the experimental setup, the tip-launched guided modes are scattered into free space 
at the sample edge and interfere with the tip-scattered light at the photodetector. b) and c) NIR 
nanoimaging results for a 110-nm-thick MoS2 and a 270-nm-thick h-BN microcrystals at the same 
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excitation wavelength λ=1530 nm, respectively. The inverse damping ratios γp-1 of the guided modes 
can be obtained by fitting the fringe profiles with damped cosine waves. Note that the first three 
experimentally obtained fringes have been left out in the fitting procedure in both b and c, to eliminate 
the interference from the edge-launched guided modes. d) and e) Numerical simulations of the mode 
propagation in MoS2 and h-BN, respectively. Due to the finite thickness of the SiO2 layer, the guided 
modes can leak out of the waveguides and lead to the observed transmission losses in b and c. 
Moreover, due to the lower field confinement, the guided modes in h-BN tunnel through the SiO2 
layer much easier than those in MoS2, thus suffering higher transmission loss. The red arrows indicate 
the propagation directions of the leaked light in Si. Note that for h-BN the mode leakage rate is higher 
than that for MoS2. 
 

Near-field optical images of the waveguide modes in MoS2 and h-BN were obtained by scattering-

type scanning near-field optical microscopy (s-SNOM).[33-37] (see Experimental Section). Figure 1a 

is the schematic diagram of the experimental setup for MoS2 NIR nanoimaging. The MoS2 

microcrystal is exfoliated onto standard silicon wafer with a 300-nm-thick SiO2 top layer. The laser 

beam with a wavelength of 1530 nm is focused onto the apex of the s-SNOM tip to excite both 

ordinary and extraordinary guided modes in the air-MoS2-SiO2 three-layer waveguide. These modes 

spread circularly in the waveguide until they come across the sharp edge of the MoS2 microcrystal. 

At the edge, part of these guided modes get scattered into the far field and interfere with the tip-

scattered light at the photodetector (inset of Figure 1a). With the sample raster-scanning under the s-

SNOM tip, an interference pattern can therefore be recorded. Since their paths back to the 

photodetector are both oblique to the MoS2 surface, the optical path difference between the tip-

scattered and the edge-scattered light depends on the direction of the MoS2 edge, and therefore the s-

SNOM images of the guided modes are strongly edge-orientation dependent. To reduce the 

complexity in data analysis, we align the edge of MoS2 vertically along the direction of the AFM 

cantilever and scan horizontally. In this way, the obtained apparent effective indices of refraction for 

the guided modes differentiate from the genuine ones only by a constant geometrical factor 

cos sinα β  (α is the angle between the illumination wavevector k0 and its projection in the x-y plane 

kxy, β is the angle between kxy and the investigated sample edge).[30,38] To compare the transmission 

losses of the guided modes in MoS2 and h-BN, we repeated the same experiment on h-BN using the 

same setup. 



     

6 
 

Experimental results for the near-field imaging of a 110-nm-thick MoS2 and a 270-nm-thick h-BN 

microcrystals are compared side by side in Figure 1b and c. It is obvious to see that the waveguide 

mode in MoS2 exhibits a relatively higher wavelength compression and a much longer propagation 

distance than that in h-BN. To quantify the transmission losses of the guided modes, we fit the 

experimental data with a damped cosine wave 

( ) ( ) ( )2
1

exp
cos

q x
s x A q x B C

xη

−
= + + .  (1) 

In Equation 1 s(x) is the magnitude of the near-field signal, A is the amplitude of cosine wave, B is 

a phase constant, C is the DC component of near-field signal, q1 is the apparent wavevector of 

waveguide modes, q2 is the damping factor, and η is a factor accounting for the circular spreading of 

tip-launched waveguide modes. The fitted curves are overlaid to the near-field fringes in Figure 1b 

and c. The inverse damping ratio γp-1=q1/q2 is 90.9 for MoS2 and 45.6 for h-BN. This disparity in 

transmission loss is counter-intuitive at the first glance since both MoS2 and h-BN are dielectric media 

at the wavelength of 1530 nm and thus only minor scattering loss from the fabrication imperfection 

is expected. However, the experimental results can be understood if we take the finite layer thickness 

(300 nm) of SiO2 into consideration and regard both the MoS2 and the h-BN heterostructures as leaky 

mode waveguides,[39] in which all the guided modes with effective indices of refraction less than the 

refractive index of Si (3.5) tend to tunnel through the SiO2 layer and dissipate in the Si layer below. 

The guided modes are better confined in MoS2 in both vertical and horizontal directions as a result of 

its relatively higher refractive indices than those of h-BN,[30] as demonstrated by numerical 

simulations in Figure 1d and e. This better vertical confinement makes the guided modes in MoS2 

less likely to leak out and therefore exhibit lower loss in practice. 

Of course, the low transmission loss alone does not necessarily make TMDs of unique appeal in 

integrated optical phase retardation applications; it is the extreme elliptic anisotropy in the 

technologically important NIR frequency range that holds the key. In isotropic materials, different 

guided modes are forbidden from possessing the same effective index of refraction by the optical 
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nondegeneracy theorem (see Section 1 in the Supporting Information for details). Therefore, phase 

matching between different guided modes in this kind of waveguide can never be achieved and the 

modal birefringence is only tunable in magnitude in a limited range.[40] On the contrary, the 

nondegeneracy between orthogonally polarized guided modes can be violated in a planar waveguide 

comprising elliptically anisotropic media (see Section 2 in the Supporting Information for details) 

and the modal birefringence is tunable in both sign and magnitude in a wide range. In the following, 

to theoretically investigate the modal birefringence tunability of vdW waveguides, we take MoS2 and 

h-BN as representative examples again. 

The characteristic equations for the TE and TM polarized guided modes in a planar waveguide made 

of uniaxially anisotropic guiding layer and isotropic cladding layers can be written as[30] 

2 2 2 2
eff,TE 1 eff,TE 22 2 1 1

0 eff,TE 2 2 2 2
eff,TE eff,TE

tan tano

o o

n n n n
k n n d p

n n n n
π− −

   − −
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   − −   
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and 

2 2 2 2
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e e e
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n n nn n n n

π− −
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   − −   

, (3) 

respectively. In Equation 2 and 3, k0 is the free-space wavenumber; d is the guiding layer thickness; 

no and ne are the ordinary and extraordinary refractive indices of the guiding layer, respectively; n1 

and n2 are the refractive indices of superstrate and substrate layers, respectively; p and q are the order 

numbers of TE and TM modes, respectively; neff,TE and neff,TM are effective indices of refraction for 

TE and TM modes, respectively. Specifically, Equation 2 and 3 can be reduced to the characteristic 

equations for guided modes in a planar waveguide made of exclusively isotropic materials by 

equalizing no and ne.[41] 
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Figure 2. Modal birefringences between orthogonally polarized guided modes in vdW waveguides. 
a) and b) Thickness dispersions of ordinary and extraordinary modes in the air-MoS2-SiO2 and air-h-
BN-SiO2 waveguides, respectively. The blue stars indicate the phase matching points of the TM0 and 
TE1 modes in both MoS2 and h-BN waveguides. On the left side of these critical points, the modal 
birefringence between TM0 and TE1 defined as ∆n=neff,TM0-neff,TE1 is positive, while on the right side 
∆n is negative. The insets in a and b show that the modal birefringence in vdW waveguides can be 
tuned in both sign and magnitude continuously by changing thickness of the guiding layer. The larger 
the out-of-plane anisotropy the broader the tuning range of the modal birefringence. Note that in both 
a and b double logarithmic scales are used. 
 

Shown in Figure 2a are the thickness dispersions of the four lowest-order guided modes in the air-

MoS2-SiO2 three-layer waveguide, obtained by solving Equation 2 and 3 numerically. There are two 

intriguing features demonstrated in Figure 2a: the grouping yet non-crossing of guided modes with 

the same polarization state, and the crossing of guided modes with different polarization states. 

Specifically, in the limit of d approaching the cut-off thickness of each guided mode, neff of the 

relevant mode approaches the substrate refractive index; as d approaches infinity, neff for the TM (TE) 

polarized extraordinary (ordinary) modes approaches asymptotically to the value of ne (no). Since 

ne<no for MoS2, the lth order TM mode intersects with all the ≥l+1th TE modes. At the intersection 

point (indicated by a blue star, d=236 nm), the two orthogonal guided modes share the same effective 

index of refraction, i.e. being phase matched. At this phase matching point, the modal birefringence 

between TM0 and TE1 defined as ∆n=neff,TM0-neff,TE1 is exactly zero; while it is positive on the left 

side of this critical point and negative on the right side. Therefore, the modal birefringence between 

TM0 and TE1 is tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. 

The guided modes in h-BN exhibit similar dispersion behaviors to those in MoS2, as shown in Figure 
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2b. However, the tuning range of the resultant modal birefringence is much narrower than that of 

MoS2. This is because the maximum tuning range of the modal birefringence is fundamentally limited 

by the optical anisotropy of the waveguide material: the larger the out-of-plane anisotropy the broader 

the tuning range of the modal birefringence (this claim can be further confirmed by considering the 

extreme situation of isotropic guiding layer, i.e. zero material birefringence, see Section 3 in the 

Supporting Information for details). Since the optical birefringence of h-BN is significantly less than 

that of MoS2 at the wavelength of 1530 nm,[30] the tunability of the modal birefringence in h-BN falls 

in between the cases of a pure isotropic material and MoS2. This is another reason why h-BN is 

inferior to MoS2 for our proposed applications. 

To verify the sign and magnitude bi-tunability of modal birefringence between TM0 and TE1 modes 

in the air-MoS2-SiO2 waveguide experimentally, we conducted a series of NIR near-field imaging of 

MoS2 microcrystals with thicknesses ranging from 205 nm to 360 nm in order to encompass the 

critical thickness d=236 nm. In Figure 3a, we show the fringe profiles of the guided modes in 

waveguides with different MoS2 thicknesses (see Section 4 in the Supporting Information for the 

corresponding near-field images). The indeterminate fringe spacings and the evident beat notes in the 

near-field profiles strongly indicate the presence of multi-mode superposition, which can be revealed 

by Fourier analysis of the data in momentum space.[30,38] Figure 3b shows the momentum-space 

spectra of the fringe profiles in Figure 3a. The geometrical factor in the wavevectors has been 

corrected by shifting all the spectra to the left by a value of cosαsinβ. As assigned in Figure 3b, each 

peak corresponds to a single guided mode or doubly-degenerate modes, except for the left-most ones, 

which are assigned to the air mode that originates from the residual far-field interferences.[30,38] All 

the guided modes shift towards the high spatial frequency direction with the increase of the guiding 

layer thickness. 
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Figure 3. Experimental verification of the sign and magnitude bi-tunability of modal birefringence 
in the air-MoS2-SiO2 three-layer waveguide. a) Fringe profiles of the guided modes corresponding to 
different MoS2 thicknesses. b) Momentum-space spectra of the imaged guided modes, obtained by 
imposing Fourier transform on the near-field fringe profiles in a. The dash lines correspond to the 
first three dispersion curves in Figure 2a. 
 

The modal birefringence ∆n defined above can be experimentally obtained by taking the difference 

between the peak positions of TM0 and TE1. As shown in Figure 4a, ∆n is initially positive and 

decreases with the increasing MoS2 thickness in the range from 205 nm to 360 nm (∆n205nm=+0.30, 

∆n360nm=-0.82), with the zero-crossing point at a thickness of about 236 nm. At this critical thickness, 

as the corresponding peaks coincide and merge into a single one in the momentum space (Figure 3b), 

the TM0 mode and the TE1 mode are perfectly phase matched. 
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Figure 4. a) Experimentally obtained modal birefringence ∆n between the TM0 and TE1 guided 
modes, it can be tuned continuously from positive to negative by varying the guiding layer thickness. 
The theoretical curve is a duplicate of the inset in Figure 2a. b) Numerical simulations of the real-
space electric field distributions associated with TM0 and TE1 modes in waveguides with different 
MoS2 thicknesses. As a result of the modal birefringence shown in a, the polarization direction of the 
total field E tends to change as the modes propagate along the waveguide: only in the case of perfect 
phase matching (the middle panel) the polarization direction of E can maintain; in the cases of both 
positive and negative modal birefringences (the upper and lower panels), the polarization direction 
of E always rotates, anticlockwise and clockwise, respectively. 
 

The sign and magnitude bi-tunability of the modal birefringence between orthogonally polarized low-

loss guided modes is of special interest in the polarization management in integrated photonic devices. 

In the case of ∆n=0, phase matching between the TE polarized ordinary and the TM polarized 

extraordinary modes (middle panel of Figure 4b) allows a new phase-matching scheme in nonlinear 

optics.[42-44] In the case of ∆n≠0, the phase difference between the orthogonally polarized guided 

modes accumulated in a transmission distance L is ϕ = k0∆nL. By choosing suitable transmission 

distances, on-chip optical phase retardation elements such as quarter- and half-wave plates can be 

realized. For example, as shown in the upper/lower panel of Figure 4b, the polarization direction of 

the total electric field of TM0 and TE1 modes E would rotate 90 degrees anticlockwise/clockwise after 

a very short propagation distance about 2.6 µm (zero-order half-wave plates) in the 205/270-nm-thick 
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MoS2 waveguide. This small working-distance is extremely valuable for nano-integrated polarization 

management applications. For these prospects to come true, interferences from the TE0 mode and 

other unwanted modes had better to be eliminated. An ultimate solution is to utilize the degenerate 

fundamental modes in positive crystals (see Figure S2a in the Supporting Information for details); 

however, unfortunately, there is no naturally occurred positive vdW crystals known so far. As an 

alternative approach, we can excite the needed modes selectively using prism coupling or grating 

coupling methods;[45,46] in these situations, the TE0 and other interference modes are no longer a 

problem. 

In summary, the symmetry breaking in layered vdW crystals renders them intrinsically anisotropic in 

optical responses. Although hyperbolic anisotropy has been under intense studies in recent years, we 

demonstrate here that the elliptic anisotropy in TMDs is also highly valuable. By using MoS2 as an 

example, we show the low-loss transmission of the guided modes as well as the sign- and magnitude-

tunable modal birefringence. Our work represents a unique new opportunity to control the 

polarization behavior of photons in integrated optical circuits at the microscale, with only the 

thickness of the vdW materials as tuning parameter. Future research can include electrical tuning of 

the optical birefringence of vdW crystals (e.g. via Kerr effect), seeking for positive vdW crystals 

(ne>no), and geometric designing of channel vdW waveguides, with the goal of achieving tunable 

modal birefringence between the fundamental (TE0 and TM0) guided modes.  



     

13 
 

 

Experimental Section 

Sample preparation: Silicon wafers with a 300-nm-thick SiO2 top layer were used as substrates for 

all samples. The h-BN and MoS2 microcrystals of various thicknesses were exfoliated from bulk 

crystals. 

Near-field optical measurement: The nanoimaging experiments described in the main text were 

performed using a commercial s-SNOM (www.neaspec.com). The s-SNOM is based on a tapping-

mode AFM illuminated by monochromatic lasers of the wavelength 1530 nm. The near-field images 

were registered by pseudo-heterodyne interferometric detection module with tip-tapping frequency 

around 270 kHz, the tip-tapping amplitude is 50 nm for all experiments. By demodulating the optical 

signal at the third order harmonic of the tip-tapping frequency, the noise from the background and 

stray light can be greatly suppressed. 

 

Supporting Information 
Supporting Information is available from the Wiley Online Library or from the author. 
 
Acknowledgments 
This work was supported by the National Basic Key Research Program of China (No. 2015CB932400 
and 2016YFA0202000), the National Natural Science Foundation of China (No. 11704085, 
51372045, 11504063, and 11674073), and the Key Program of the Bureau of Frontier Sciences and 
Education Chinese Academy of Sciences (No. QYZDB-SSWSLH021). 
 

Received: ((will be filled in by the editorial staff)) 
Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 
  



     

14 
 

 
References 

 [1] J. D. Sarmiento-Merenguel, R. Halir, X. Le Roux, C. Alonso-Ramos, L. Vivien, P. Cheben, 

E. Durán-Valdeiglesias, I. Molina-Fernández, D. Marris-Morini, D. X. Xu, J. H. Schmid, S. Janz, A. 

Ortega-Moñux, Optica 2015, 2, 1019. 

 [2] S. Liao, W. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J. Ren, W. Liu, 

Y. Li, Q. Shen, Y. Cao, F. Li, J. Wang, Y. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N. Liu, F. 

Koidl, P. Wang, Y. Chen, X. Wang, M. Steindorfer, G. Kirchner, C. Lu, R. Shu, R. Ursin, T. Scheidl, 

C. Peng, J. Wang, A. Zeilinger, J. Pan, Phys. Rev. Lett. 2018, 120, 30501. 

 [3] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge 1999. 

 [4] A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, 

Wiley, Hoboken 2003. 

 [5] N. Wang, X. Liu, Q. Xiong, J. Xie, S. Chen, L. Liu, Opt. Lett. 2017, 42, 2996. 

 [6] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, 

M. Lončar, Nature 2018. 

 [7] Y. Zhang, Y. He, Q. Zhu, X. Jiang, X. Guo, C. Qiu, Y. Su, Front. Optoelectron. 2018, 11, 77. 

 [8] R. J. Black, L. Gagnon, Optical Waveguide Modes: Polarization, Coupling and Symmetry, 

McGraw-Hill, New York 2010. 

 [9] J. Schollhammer, M. A. Baghban, K. Gallo, Opt. Lett. 2017, 42, 3578. 

[10] D. Dai, L. Liu, S. Gao, D. Xu, S. He, Laser Photonics Rev. 2012, 7, 303. 

[11] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, 461. 

[12] Y. L. W, J. Phys. C: Solid State Phys. 1973, 6, 551. 

[13] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. 

Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. 

Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, Science 2014, 343, 1125. 

[14] J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. 

Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, K. 



     

15 
 

S. Novoselov, Nat. Commun. 2014, 5, 5221. 

[15] Z. Zheng, J. Chen, Y. Wang, X. Wang, X. Chen, P. Liu, J. Xu, W. Xie, H. Chen, S. Deng, N. 

Xu, Adv. Mater. 2018, 30, 1705318. 

[16] W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-

Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, 

S. Lee, R. Hillenbrand, Q. Bao, Nature 2018, 562, 557. 

[17] K. Khaliji, A. Fallahi, L. Martin-Moreno, T. Low, Phys. Rev. B 2017, 95, 201401. 

[18] J. S. Toll, Phys. Rev. 1956, 104, 1760. 

[19] K. R. Waters, J. Mobley, J. G. Miller, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 

52, 822. 

[20] D. N. Basov, M. M. Fogler, F. J. García De Abajo, Science 2016, 354, g1992. 

[21] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, 

L. Martin-Moreno, F. Koppens, Nat. Mater. 2017, 16, 182. 

[22] C. H. Perry, G. Rupprecht, R. Geick, Phys. Rev. 1966, 146, 543. 

[23] M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, K. S. Thygesen, Nat. Commun. 

2017, 8, 320. 

[24] J. Son, J. Kwon, S. Kim, Y. Lv, J. Yu, J. Lee, H. Ryu, K. Watanabe, T. Taniguchi, R. Garrido-

Menacho, N. Mason, E. Ertekin, P. Y. Huang, G. Lee, A. M. Van Der Zande, Nat. Commun. 2018, 9, 

3988. 

[25] J. Shim, S. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. 

Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J. Ahn, C. 

Hinkle, A. Ougazzaden, J. Kim, Science 2018. 

[26] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 

7, 699. 

[27] R. Ganatra, Q. Zhang, ACS Nano 2014, 8, 4074. 

[28] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang, Adv. Mater. 2014, 



     

16 
 

26, 3538. 

[29] F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, R. Lv, Adv. Mater. 

2016, 29, 1603266. 

[30] D. Hu, X. Yang, C. Li, R. Liu, Z. Yao, H. Hu, S. N. G. Corder, J. Chen, Z. Sun, M. Liu, Q. 

Dai, Nat. Commun. 2017, 8, 1471. 

[31] G. Ghosh, Opt. Commun. 1999, 163, 95. 

[32] S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, 

J. Wu, Y. Liu, T. E. Tiwald, S. B. Cronin, B. M. Howe, M. Mecklenburg, R. Haiges, D. J. Singh, H. 

Wang, M. A. Kats, J. Ravichandran, Nat. Photonics 2018, 12, 392. 

[33] F. Keilmann, R. Hillenbrand, Philos. Trans. R. Soc., A 2004, 362, 787. 

[34] N. Ocelic, A. Huber, R. Hillenbrand, Appl. Phys. Lett. 2006, 89, 101124. 

[35] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. 

Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, D. N. 

Basov, Nature 2012, 487, 82. 

[36] J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. 

Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, D. A. F. Garcia, R. 

Hillenbrand, F. H. Koppens, Nature 2012, 487, 77. 

[37] G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S. S. Sunku, B. Y. Jiang, J. 

Hone, C. R. Dean, M. M. Fogler, D. N. Basov, Nature 2018, 557, 530. 

[38] Z. Fei, M. E. Scott, D. J. Gosztola, J. J. Foley, J. Yan, D. G. Mandrus, H. Wen, P. Zhou, D. 

W. Zhang, Y. Sun, J. R. Guest, S. K. Gray, W. Bao, G. P. Wiederrecht, X. Xu, Phys. Rev. B 2016, 94, 

81402. 

[39] J. Hu, C. R. Menyuk, Adv. Opt. Photonics 2009, 1, 58. 

[40] D. M. Shyroki, A. V. Lavrinenko, J. Opt. A: Pure Appl. Opt. 2003, 5, 192. 

[41] K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis, John Wiley & Sons, New 

York 2001. 



     

17 
 

[42] R. Normandin, G. I. Stegeman, Opt. Lett. 1979, 4, 58. 

[43] T. Suhara, M. Fujimura, Waveguide Nonlinear-Optic Devices, Springer, New York 2003. 

[44] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun, Adv. Mater. 2018, 30, 1705963. 

[45] B. M. Trabold, D. Novoa, A. Abdolvand, P. S. J. Russell, Opt. Lett. 2014, 39, 3736. 

[46] W. S. Mohammed, A. Mehta, M. Pitchumani, E. G. Johnson, IEEE Photonics Technol. Lett. 

2005, 17, 1441. 

 



     

1 
 

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. 
 
Supporting Information 
 
 
Tunable Modal Birefringence in Low-loss van der Waals Waveguide 
 
Debo Hu, Ke Chen, Xinzhong Chen, Xiangdong Guo, Mengkun Liu*, and Qing Dai* 
 

1. Optical nondegeneracy theorem for guide-modes in planar waveguide 

In quantum mechanics, different bound states of electrons in a one-dimensional (1D) potential well 

are forbidden to possess the same energy level by the nondegeneracy theorem.[1] Taking the 

asymmetric finite 1D square potential well V(z) for example (Figure S1a), the energy level of each 

electronic bound state ξ can be obtained by solving the 1D time-independent Schrödinger equation 

( ) [ ]2

2 ( ) ( ) 0mz V z zψ ξ ψ′′ + − =
h

,  (S1) 

where ψ(z) is the wave function corresponding to the bound states, m is the mass of the electron, and 

ħ is the reduced Planck constant. Shown in Figure S1b is the evolution of energy levels for 

eigenmodes of different order number n with respect to the potential width w, the non-crossing 

behaviour of these evolution curves is a clear demonstration of the energetical nondegeneracy. 

Considering that the wave equation for optical waveguide and the time-independent Schrödinger 

equation are both Helmholtz equations which closely resemble each other, we can prove an optical 

analogy of the quantum nondegeneracy theorem exists, which claims different eigenmodes of a planar 

waveguide cannot share the same effective index of refraction. 

In a planar waveguide, the photons are confined only in the z direction, which is perpendicular to the 

interfaces of the guiding and cladding layers. Thus, the wave equation of the transverse-electric (TE) 

polarized guide-modes can be written as 

( ) ( ) ( )2 2 2
0 eff 0E z k n z n E z′′  + − =  ,  (S2) 

where E(z) is the electric field distribution of the guide-mode, n(z) is the refractive-index profile of 

the waveguide, neff is the effective index of refraction for the guide-mode, and k0 is the free-space 



     

2 
 

wavenumber. To prove the optical nondegeneracy theorem we start by assuming that the opposite 

proposition is true, i.e. there are two different yet linearly independent solutions of Equation S2, E1 

and E2, share the same eigenvalue neff. By substituting E1 and E2 into Equation S2 and rearranging 

the equations, we have 

( )2 2 2
1 1 0 ff 2 2/ /eE E k n n z E E′′ ′′ = − =  ,  (S3) 

which can be further manipulated as 

( )1 2 1 2 1 2 1 2 0E E E E E E E E
′′′ ′′ ′ ′− = − = .  (S4) 

Equation S4 implies 

1 2 1 2E E E E c′ ′− = ,  (S5) 

where c is a constant. Since E1 and E2 are both associated with confined waveguide eigenmodes, they 

must vanish at infinity; as a result, c must be zero. This means 

1 1 2 2/ /E E E E′ ′= .  (S6) 

Integrating Equation S6 from both sides we have 

1 2ln ln lnE E C= + ,  (S7) 

where C is another integration constant. Equation S7 implies that E1 and E2 are linearly dependent 

1 2E CE= ,  (S8) 

this is in direct contradiction with the initial assumption thus concludes the proof. The nondegeneracy 

of the transverse-magnetic (TM) polarized guide-modes as well as that of guide-modes with different 

polarization states can be proved following the same procedure described above. 

This optical nondegeneracy theorem can be further verified by using graphical illustration. Shown in 

Figure S1c is the schematic of an asymmetric Air-Si-SiO2 three-layer waveguide. The refractive 

indices for its superstrate, substrate and guiding layers are n1, n2 and n0, respectively (n0>n2>n1); and 

the guiding layer thickness is d. By imposing the electromagnetic boundary conditions upon Equation 

2 at both interfaces of the waveguide we can relate the structural and optical parameters of the 
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waveguide with the effective refractive indices of the guide-modes neff explicitly, via the so-called 

characteristic equations. The characteristic equations for the transverse electric (TE) and transverse 

magnetic (TM) polarized guide-modes can be written as[2] 

2 2 2 2
eff,TE 1 eff,TE 22 2 1 1

0 0 eff,TE 2 2 2 2
0 eff,TE 0 eff,TE

tan tan
n n n n

k n n d p
n n n n

π− −
   − −
   − = + +
   − −   

  (S9) 

and 

2 2 2 22 2
eff,TM 1 eff,TM 22 2 1 10 0

0 0 eff,TM 2 22 2 2 2
1 20 eff,TM 0 eff,TM

tan tan
n n n nn nk n n d q

n nn n n n
π− −

   − −
   − = + +
   − −   

  (S10) 

respectively. In Equation S9 and S10, p and q are the order numbers of TE and TM polarized 

eigenmodes, respectively. 

Shown in Figure S1d are the thickness dispersions of eigenmodes in the planar waveguide, obtained 

by solving Equation S9 and S10 numerically. In the limit as d approaches the cut-off thickness of 

each guide-mode, neff of the relevant mode approaches the substrate refractive index n2, 

corresponding to the critical state that the photons are about to leak out of the guiding layer and 

propagate freely in the substrate; In the limit as d approaches infinity, neff’s of all the guide-modes 

approach the guiding layer refractive index asymptotically, corresponding to the situation that the 

photons propagate freely in a bulk material of refractive index n0. Besides these two extreme 

situations, the dispersion curves of different eigenmodes never intersect with each other. Therefore, 

for a waveguide with a definite guiding layer thickness, its different eigenmodes cannot possess the 

same effective index of refraction. The same non-crossing behaviour of the dispersion curves in 

Figure S1d as that manifested in Figure S1b is a piece of convincing evidence for the validity of the 

optical nondegeneracy theorem. 
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Figure S1. Nondegeneracy of eigenmodes in 1D potential well and planar waveguide. a) Asymmetric 
finite 1D square potential well V(z) for electrons. b) Energy level evolution of different bound electron 
eigenmodes in the potential well illustrated in a with respect to the potential width, obtained by 
solving Equation S1 numerically, n is the mode order. c) Refractive-index profile n(z) of the Air-Si-
SiO2 three-layer waveguide. d) Thickness dispersions of TE and TM polarized eigenmodes in the 
planar waveguide illustrated in c. 
 

2. Anisotropy-induced nondegeneracy violation in van der Waals waveguide 

In quantum mechanics, the nondegeneracy theorem can be violated by introducing singularities into 

the 1D potential;[3-5] however, the corresponding refractive-index profiles containing singularities 

cannot be realistically established in the real optical system, new strategy is necessary to circumvent 

the optical nondegeneracy theorem. 

Since the TE and TM guide-modes are orthogonally polarized, their respective electric field 

components experience different components of the refractive-index tensors. In a planar waveguide 

made of exclusively isotropic materials, the optical nondegeneracy theorem always holds; however, 
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if anisotropic materials are introduced into the waveguide, the refractive-index profile would split, 

and this provides us with the possibility to defy the optical nondegeneracy theorem. 
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Figure S2. Anisotropy-induced optical degeneracy of eigenmodes in planar waveguides with 
uniaxially anisotropic guiding layers. a)-b) Thickness dispersions of ordinary and extraordinary 
eigenmodes in planar waveguide with positively and negatively anisotropic guiding layer, 
respectively. c)-d) Electric field distributions of degenerate eigenmodes indicated in a and b by the 
blue stars, respectively. 
 

Shown in Figure S2a and Figure S2b are the thickness dispersions of the eigenmodes in a planar 

waveguide with a positively and negatively anisotropic guiding layer, respectively, obtained by 

solving Equation 2 and 3 in the main text numerically. There are two intriguing features in both 

Figure S2a and Figure S2b: the grouping yet non-crossing of guide-modes with the same polarization 

state, and the crossing of guide-modes with different polarization states. Specifically, in the case of a 

positive guiding layer, as d approaches infinity, neff’s for the TM (TE) polarized extraordinary 

(ordinary) eigenmodes approach asymptotically to the value of ne (no). Since ne>no for a positive 

guiding layer, there are always intersection points for the thickness dispersion curves of the TE and 
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TM polarized modes with the same order number; the lth order TE mode intersects with all the TM 

modes of the order number ≥l. In the case of a negative guiding layer, by the same argument, the lth 

order TM mode intersects with all the TE modes of the order number ≥l+1; however, none dispersion 

curves of the TM modes intersect with that of the fundamental TE mode. At these intersection points 

(like the ones indicated by blue stars), although the two crossed guide-modes are of different electric 

field distributions as shown in Figure S2c and Figure S2d, they share the same effective refractive 

index. Therefore, the optical nondegeneracy theorem can be violated in a well-designed anisotropic 

waveguide. 

3. Modal birefringence tunability of air-Si-SiO2 waveguide 
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Figure S3. Thickness dispersions of TE and TM polarized modes in air-Si-SiO2 three-layer 
waveguide. There is no intersection point between dispersion curves of different modes, accordingly, 
the modal birefringences can only be tuned in magnitude in limited ranges and usually display non-
monotonicity with respect to the guiding layer thickness as shown in the inset. 
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4. Near-field images of MoS2 microcrystals with different thicknesses 
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Figure S4. Near-field images of MoS2 microcrystals with different thicknesses 
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