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Abstract: van der Waals (vdW) crystals are promising candidates for integrated phase retardation
applications due to their large optical birefringence. Among the two major types of vdW materials,
the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the
supported polaritonic modes are exclusively transverse-magnetic (TM) polarized and relatively lossy.
Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum
disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency
range of optical communication. Both transverse-electric (TE) polarized ordinary and TM polarized
extraordinary waveguide modes can be supported in MoSz microcrystals with suitable thicknesses.
In this work, low-loss transmission of these guided modes is demonstrated with nano-optical imaging
at the near-infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical
calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE
and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the
MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization

behavior of photons with vdW materials.
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Phase retardation elements such as waveplates and compensators are important polarization
management components that play an essential part in modern optical communication systems.*?
Anisotropic crystals exhibiting optical birefringence are the fundamental building blocks of these
bulk components.[>4 With the advancement of nano-optics in the quantum era, miniaturization and
integration of these phase retardation components become imperative.’7! In analogy with their bulk
counterparts which introduce path difference between orthogonally polarized light through optical
birefringence, the integrated optical phase retardation elements import path difference between
orthogonally polarized guided modes via the modal birefringence of the waveguides.®®! Unlike the
bulk birefringence which is predefined by the material, the modal birefringence of waveguides are
tunable with constituent materials and waveguide geometry.’! However in practice the manufacture
of integrated phase retarders with designed modal birefringence is particularly challenging because
of their stringent fabrication tolerance.!® Therefore, new materials allowing layer-by-layer control
and fine mechanical processing are highly demanded.

Due to the difference between their interlayer and intralayer bonding strengths, van der Waals (vdW)
crystals are both mechanically and optically anisotropic.[*%? In light of this intrinsic out-of-plane bi-
anisotropy, vdW crystals are promising materials for the phase retardation applications in integrated
optical circuits: the mechanical anisotropy permits the precise layer-by-layer manufacturing of the
waveguide structure while the optical anisotropy provides one more degree of freedom to control its
modal birefringence. vdW crystals with hyperbolic optical responses such as hexagonal boron nitride
(h-BN)3241 and o-phase molybdenum trioxide (a-MoO3)[516] have been demonstrated to support
highly confined phonon polaritons in the mid-infrared (MIR) frequency range. However, these
polaritonic modes are inherently inadequate for the integrated phase retardation applications
(polariton-assisted polarization control of far-field light with metasurfaces made of vdW materials is
possiblet™™), as a result of their inevitable transmission loss (imposed by the Kramers-Kronig
relationships between dispersion and dissipation™?l) and the absence of transverse-electric (TE)

polarized modes.?2! An alternative way is to resort to vdW crystals with elliptic anisotropy at
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frequencies far away from any resonant absorption bands. In such case, the imaginary parts of the
permittivity tensor are usually negligible and result in positive real parts.l?? The near-zero imaginary
parts of permittivity guarantee the low-loss transmission of the supported waveguide modes, while
the positive real parts allow the co-occurrence of TE and transverse-magnetic (TM) polarized modes.
Transition metal dichalcogenides (TMDs) are expected to exhibit elliptic light dispersion in a broad
frequency range (note that h-BN is also elliptically anisotropic out of its Reststrahlen bands, the
reason TMDs are better for our proposed applications will be discussed at a later stage); %] this elliptic
anisotropy together with the single-layer precisely modifiable structure®? of TMDs would permit
fine-tuning of the modal birefringence between TE and TM polarized modes, and thus enable the
implementation of phase retarders in integrated optical circuits.

In this work, we choose molybdenum disulfide (M0S2)[?6-2% as a representative for TMDs to introduce
the concept of vdW optical phase retarders. We first show the low-loss transmission of waveguide
modes in MoSz2 in the near-infrared (NIR) frequency range by comparing the near-field imaging
results between MoS2 and h-BN at the same excitation wavelength 1=1530 nm. We then demonstrate
that the modal birefringence between the orthogonally polarized ordinary (TE) and extraordinary
(TM) guided modes can be fine-tuned by varying the thickness of the MoS: crystal, as a result of its
extreme out-of-plane elliptic anisotropy (the optical birefringence of MoS: at 1530 nm is about 1.4,
much larger than those of common non-vdW crystals and the state-of-the-art barium titanium
sulfidel®132), Functionalities of the proposed vdW zero-order half-wave plates and phase-matched

waveguide will also be discussed via numerical simulations.
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Figure 1. Optical nanoimaging of the waveguide modes in MoSz and h-BN. a) Experimental setup
for MoS2 NIR nanoimaging. The sharp edges of MoSz microcrystals are aligned to the y axis and the
s-SNOM tip scans along the x axis. a is the angle between the illumination wavevector ko and its
projection in the x-y plane kxy, f is the angle between kxy and the investigated sample edge. Inset is
the front view of the experimental setup, the tip-launched guided modes are scattered into free space
at the sample edge and interfere with the tip-scattered light at the photodetector. b) and ¢) NIR
nanoimaging results for a 110-nm-thick MoSz and a 270-nm-thick h-BN microcrystals at the same
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excitation wavelength A1=1530 nm, respectively. The inverse damping ratios %™ of the guided modes
can be obtained by fitting the fringe profiles with damped cosine waves. Note that the first three
experimentally obtained fringes have been left out in the fitting procedure in both b and c, to eliminate
the interference from the edge-launched guided modes. d) and €) Numerical simulations of the mode
propagation in MoSz and h-BN, respectively. Due to the finite thickness of the SiO2 layer, the guided
modes can leak out of the waveguides and lead to the observed transmission losses in b and c.
Moreover, due to the lower field confinement, the guided modes in h-BN tunnel through the SiO2
layer much easier than those in MoS;, thus suffering higher transmission loss. The red arrows indicate
the propagation directions of the leaked light in Si. Note that for h-BN the mode leakage rate is higher
than that for MoSo.

Near-field optical images of the waveguide modes in MoS2 and h-BN were obtained by scattering-
type scanning near-field optical microscopy (s-SNOM).[3%71 (see Experimental Section). Figure 1a
is the schematic diagram of the experimental setup for MoS: NIR nanoimaging. The MoS:
microcrystal is exfoliated onto standard silicon wafer with a 300-nm-thick SiO:2 top layer. The laser
beam with a wavelength of 1530 nm is focused onto the apex of the s-SNOM tip to excite both
ordinary and extraordinary guided modes in the air-MoSz-SiO2 three-layer waveguide. These modes
spread circularly in the waveguide until they come across the sharp edge of the MoS2 microcrystal.
At the edge, part of these guided modes get scattered into the far field and interfere with the tip-
scattered light at the photodetector (inset of Figure 1a). With the sample raster-scanning under the s-
SNOM tip, an interference pattern can therefore be recorded. Since their paths back to the
photodetector are both oblique to the MoS: surface, the optical path difference between the tip-
scattered and the edge-scattered light depends on the direction of the MoS2 edge, and therefore the s-
SNOM images of the guided modes are strongly edge-orientation dependent. To reduce the
complexity in data analysis, we align the edge of MoS: vertically along the direction of the AFM
cantilever and scan horizontally. In this way, the obtained apparent effective indices of refraction for

the guided modes differentiate from the genuine ones only by a constant geometrical factor

cosasin B («ais the angle between the illumination wavevector ko and its projection in the x-y plane

kxy, A3 is the angle between kxy and the investigated sample edge).°®1 To compare the transmission
losses of the guided modes in MoS2 and h-BN, we repeated the same experiment on h-BN using the

same setup.



Experimental results for the near-field imaging of a 110-nm-thick MoSz and a 270-nm-thick h-BN
microcrystals are compared side by side in Figure 1b and c. It is obvious to see that the waveguide
mode in MoSz exhibits a relatively higher wavelength compression and a much longer propagation
distance than that in h-BN. To quantify the transmission losses of the guided modes, we fit the

experimental data with a damped cosine wave

exp(—a,X) s

s(x)=Acos(g,x+B) v

C. (1)

In Equation 1 s(x) is the magnitude of the near-field signal, A is the amplitude of cosine wave, B is
a phase constant, C is the DC component of near-field signal, q: is the apparent wavevector of
waveguide modes, g2 is the damping factor, and 7 is a factor accounting for the circular spreading of
tip-launched waveguide modes. The fitted curves are overlaid to the near-field fringes in Figure 1b
and c. The inverse damping ratio »™=q1/q2 is 90.9 for MoS: and 45.6 for h-BN. This disparity in
transmission loss is counter-intuitive at the first glance since both MoS:2 and h-BN are dielectric media
at the wavelength of 1530 nm and thus only minor scattering loss from the fabrication imperfection
is expected. However, the experimental results can be understood if we take the finite layer thickness
(300 nm) of SiOz2 into consideration and regard both the MoS2 and the h-BN heterostructures as leaky
mode waveguides,®! in which all the guided modes with effective indices of refraction less than the
refractive index of Si (3.5) tend to tunnel through the SiO2 layer and dissipate in the Si layer below.
The guided modes are better confined in MoS: in both vertical and horizontal directions as a result of
its relatively higher refractive indices than those of h-BN,®° as demonstrated by numerical
simulations in Figure 1d and e. This better vertical confinement makes the guided modes in MoS:
less likely to leak out and therefore exhibit lower loss in practice.

Of course, the low transmission loss alone does not necessarily make TMDs of unique appeal in
integrated optical phase retardation applications; it is the extreme elliptic anisotropy in the
technologically important NIR frequency range that holds the key. In isotropic materials, different

guided modes are forbidden from possessing the same effective index of refraction by the optical



nondegeneracy theorem (see Section 1 in the Supporting Information for details). Therefore, phase
matching between different guided modes in this kind of waveguide can never be achieved and the
modal birefringence is only tunable in magnitude in a limited range.*® On the contrary, the
nondegeneracy between orthogonally polarized guided modes can be violated in a planar waveguide
comprising elliptically anisotropic media (see Section 2 in the Supporting Information for details)
and the modal birefringence is tunable in both sign and magnitude in a wide range. In the following,
to theoretically investigate the modal birefringence tunability of vdW waveguides, we take MoS2 and
h-BN as representative examples again.

The characteristic equations for the TE and TM polarized guided modes in a planar waveguide made

of uniaxially anisotropic guiding layer and isotropic cladding layers can be written ast*°!

n2 __ _np2 nZ _ _n2
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respectively. In Equation 2 and 3, ko is the free-space wavenumber; d is the guiding layer thickness;
No and ne are the ordinary and extraordinary refractive indices of the guiding layer, respectively; ni
and n2 are the refractive indices of superstrate and substrate layers, respectively; p and g are the order
numbers of TE and TM modes, respectively; nefr, e and neri,Tm are effective indices of refraction for
TE and TM modes, respectively. Specifically, Equation 2 and 3 can be reduced to the characteristic
equations for guided modes in a planar waveguide made of exclusively isotropic materials by

equalizing no and ne.[4
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Figure 2. Modal birefringences between orthogonally polarized guided modes in vdW waveguides.
a) and b) Thickness dispersions of ordinary and extraordinary modes in the air-MoS2-SiO2 and air-h-
BN-SiO2 waveguides, respectively. The blue stars indicate the phase matching points of the TMo and
TE1 modes in both MoSz and h-BN waveguides. On the left side of these critical points, the modal
birefringence between TMo and TE1 defined as An=nes,Tmo-Nesf,TE1 IS pOSItive, while on the right side
An is negative. The insets in a and b show that the modal birefringence in vdW waveguides can be
tuned in both sign and magnitude continuously by changing thickness of the guiding layer. The larger
the out-of-plane anisotropy the broader the tuning range of the modal birefringence. Note that in both
a and b double logarithmic scales are used.

Shown in Figure 2a are the thickness dispersions of the four lowest-order guided modes in the air-
MoS2-SiOz2 three-layer waveguide, obtained by solving Equation 2 and 3 numerically. There are two
intriguing features demonstrated in Figure 2a: the grouping yet non-crossing of guided modes with
the same polarization state, and the crossing of guided modes with different polarization states.
Specifically, in the limit of d approaching the cut-off thickness of each guided mode, netr of the
relevant mode approaches the substrate refractive index; as d approaches infinity, nest for the TM (TE)
polarized extraordinary (ordinary) modes approaches asymptotically to the value of ne (no). Since
ne<no for MoSz, the Ith order TM mode intersects with all the >I+1th TE modes. At the intersection
point (indicated by a blue star, d=236 nm), the two orthogonal guided modes share the same effective
index of refraction, i.e. being phase matched. At this phase matching point, the modal birefringence
between TMo and TE: defined as An=nef TMo-Neff TE1 IS €Xactly zero; while it is positive on the left
side of this critical point and negative on the right side. Therefore, the modal birefringence between

TMo and TEz is tunable in both sign and magnitude via varying the thickness of the MoSz microcrystal.

The guided modes in h-BN exhibit similar dispersion behaviors to those in MoSz, as shown in Figure
8



2b. However, the tuning range of the resultant modal birefringence is much narrower than that of
MoSa2. This is because the maximum tuning range of the modal birefringence is fundamentally limited
by the optical anisotropy of the waveguide material: the larger the out-of-plane anisotropy the broader
the tuning range of the modal birefringence (this claim can be further confirmed by considering the
extreme situation of isotropic guiding layer, i.e. zero material birefringence, see Section 3 in the
Supporting Information for details). Since the optical birefringence of h-BN is significantly less than
that of MoS: at the wavelength of 1530 nm,° the tunability of the modal birefringence in h-BN falls
in between the cases of a pure isotropic material and MoSz. This is another reason why h-BN is
inferior to MoS:2 for our proposed applications.

To verify the sign and magnitude bi-tunability of modal birefringence between TMo and TE1 modes
in the air-MoS2-SiO2 waveguide experimentally, we conducted a series of NIR near-field imaging of
MoS2 microcrystals with thicknesses ranging from 205 nm to 360 nm in order to encompass the
critical thickness d=236 nm. In Figure 3a, we show the fringe profiles of the guided modes in
waveguides with different MoS: thicknesses (see Section 4 in the Supporting Information for the
corresponding near-field images). The indeterminate fringe spacings and the evident beat notes in the
near-field profiles strongly indicate the presence of multi-mode superposition, which can be revealed
by Fourier analysis of the data in momentum space.°2®! Figure 3b shows the momentum-space
spectra of the fringe profiles in Figure 3a. The geometrical factor in the wavevectors has been
corrected by shifting all the spectra to the left by a value of cosasing. As assigned in Figure 3b, each
peak corresponds to a single guided mode or doubly-degenerate modes, except for the left-most ones,
which are assigned to the air mode that originates from the residual far-field interferences.2%31 All
the guided modes shift towards the high spatial frequency direction with the increase of the guiding

layer thickness.
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Figure 3. Experimental verification of the sign and magnitude bi-tunability of modal birefringence
in the air-MoS2-SiOz2 three-layer waveguide. a) Fringe profiles of the guided modes corresponding to
different MoS:2 thicknesses. b) Momentum-space spectra of the imaged guided modes, obtained by
imposing Fourier transform on the near-field fringe profiles in a. The dash lines correspond to the
first three dispersion curves in Figure 2a.

The modal birefringence An defined above can be experimentally obtained by taking the difference
between the peak positions of TMo and TEi. As shown in Figure 4a, An is initially positive and
decreases with the increasing MoS: thickness in the range from 205 nm to 360 nm (Anz0snm=+0.30,
Anssonm=-0.82), with the zero-crossing point at a thickness of about 236 nm. At this critical thickness,

as the corresponding peaks coincide and merge into a single one in the momentum space (Figure 3b),

the TMo mode and the TE1 mode are perfectly phase matched.
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Figure 4. a) Experimentally obtained modal birefringence An between the TMo and TE: guided
modes, it can be tuned continuously from positive to negative by varying the guiding layer thickness.
The theoretical curve is a duplicate of the inset in Figure 2a. b) Numerical simulations of the real-
space electric field distributions associated with TMo and TE1 modes in waveguides with different
MoS:2 thicknesses. As a result of the modal birefringence shown in a, the polarization direction of the
total field E tends to change as the modes propagate along the waveguide: only in the case of perfect
phase matching (the middle panel) the polarization direction of E can maintain; in the cases of both
positive and negative modal birefringences (the upper and lower panels), the polarization direction
of E always rotates, anticlockwise and clockwise, respectively.

0.0

An

The sign and magnitude bi-tunability of the modal birefringence between orthogonally polarized low-
loss guided modes is of special interest in the polarization management in integrated photonic devices.
In the case of An=0, phase matching between the TE polarized ordinary and the TM polarized
extraordinary modes (middle panel of Figure 4b) allows a new phase-matching scheme in nonlinear
optics.*#4 In the case of An#0, the phase difference between the orthogonally polarized guided
modes accumulated in a transmission distance L is ¢ = koAnL. By choosing suitable transmission
distances, on-chip optical phase retardation elements such as quarter- and half-wave plates can be
realized. For example, as shown in the upper/lower panel of Figure 4b, the polarization direction of
the total electric field of TMo and TE1 modes E would rotate 90 degrees anticlockwise/clockwise after
a very short propagation distance about 2.6 um (zero-order half-wave plates) in the 205/270-nm-thick
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MoS2 waveguide. This small working-distance is extremely valuable for nano-integrated polarization
management applications. For these prospects to come true, interferences from the TEo mode and
other unwanted modes had better to be eliminated. An ultimate solution is to utilize the degenerate
fundamental modes in positive crystals (see Figure S2a in the Supporting Information for details);
however, unfortunately, there is no naturally occurred positive vdW crystals known so far. As an
alternative approach, we can excite the needed modes selectively using prism coupling or grating
coupling methods;[546] in these situations, the TEo and other interference modes are no longer a
problem.

In summary, the symmetry breaking in layered vdW crystals renders them intrinsically anisotropic in
optical responses. Although hyperbolic anisotropy has been under intense studies in recent years, we
demonstrate here that the elliptic anisotropy in TMDs is also highly valuable. By using MoS: as an
example, we show the low-loss transmission of the guided modes as well as the sign- and magnitude-
tunable modal birefringence. Our work represents a unique new opportunity to control the
polarization behavior of photons in integrated optical circuits at the microscale, with only the
thickness of the vdW materials as tuning parameter. Future research can include electrical tuning of
the optical birefringence of vdW crystals (e.g. via Kerr effect), seeking for positive vdW crystals
(ne>no), and geometric designing of channel vdW waveguides, with the goal of achieving tunable

modal birefringence between the fundamental (TEo and TMo) guided modes.
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Experimental Section
Sample preparation: Silicon wafers with a 300-nm-thick SiO2 top layer were used as substrates for

all samples. The h-BN and MoS2 microcrystals of various thicknesses were exfoliated from bulk
crystals.

Near-field optical measurement: The nanoimaging experiments described in the main text were
performed using a commercial s-SNOM (www.neaspec.com). The s-SNOM is based on a tapping-
mode AFM illuminated by monochromatic lasers of the wavelength 1530 nm. The near-field images
were registered by pseudo-heterodyne interferometric detection module with tip-tapping frequency
around 270 kHz, the tip-tapping amplitude is 50 nm for all experiments. By demodulating the optical
signal at the third order harmonic of the tip-tapping frequency, the noise from the background and

stray light can be greatly suppressed.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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Tunable Modal Birefringence in Low-loss van der Waals Waveguide

Debo Hu, Ke Chen, Xinzhong Chen, Xiangdong Guo, Mengkun Liu*, and Qing Dai*

1. Optical nondegeneracy theorem for guide-modes in planar waveguide

In quantum mechanics, different bound states of electrons in a one-dimensional (1D) potential well
are forbidden to possess the same energy level by the nondegeneracy theorem.l! Taking the
asymmetric finite 1D square potential well V(z) for example (Figure Sla), the energy level of each

electronic bound state & can be obtained by solving the 1D time-independent Schrddinger equation
" 2m
W (Z)+F[§—V(Z)]W(Z)=O, (S1)

where y/(z) is the wave function corresponding to the bound states, m is the mass of the electron, and
i is the reduced Planck constant. Shown in Figure S1b is the evolution of energy levels for
eigenmodes of different order number n with respect to the potential width w, the non-crossing
behaviour of these evolution curves is a clear demonstration of the energetical nondegeneracy.
Considering that the wave equation for optical waveguide and the time-independent Schrédinger
equation are both Helmholtz equations which closely resemble each other, we can prove an optical
analogy of the quantum nondegeneracy theorem exists, which claims different eigenmodes of a planar
waveguide cannot share the same effective index of refraction.

In a planar waveguide, the photons are confined only in the z direction, which is perpendicular to the
interfaces of the guiding and cladding layers. Thus, the wave equation of the transverse-electric (TE)

polarized guide-modes can be written as
E"(2)+k;[n*(z)-n& |E(2)=0, (S2)
where E(z) is the electric field distribution of the guide-mode, n(z) is the refractive-index profile of

the waveguide, ner is the effective index of refraction for the guide-mode, and ko is the free-space
1
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wavenumber. To prove the optical nondegeneracy theorem we start by assuming that the opposite
proposition is true, i.e. there are two different yet linearly independent solutions of Equation S2, E:
and E2, share the same eigenvalue nesr. By substituting E1 and E2 into Equation S2 and rearranging

the equations, we have
E"/E =ki[n} -n*(z)]=E,"/E,, (S3)

which can be further manipulated as

!

E'E,~EE," = ( EE, - ElEz') 0. (S4)
Equation S4 implies
E'E,-EE, =c, (S5)

where c is a constant. Since E1 and E2 are both associated with confined waveguide eigenmodes, they

must vanish at infinity; as a result, c must be zero. This means
E//E =E,/E,. (S6)

Integrating Equation S6 from both sides we have

InE, =InE,+InC, (S7)

where C is another integration constant. Equation S7 implies that E1 and E: are linearly dependent
E, =CE,, (S8)

this is in direct contradiction with the initial assumption thus concludes the proof. The nondegeneracy
of the transverse-magnetic (TM) polarized guide-modes as well as that of guide-modes with different
polarization states can be proved following the same procedure described above.

This optical nondegeneracy theorem can be further verified by using graphical illustration. Shown in
Figure Sic is the schematic of an asymmetric Air-Si-SiO2 three-layer waveguide. The refractive
indices for its superstrate, substrate and guiding layers are nz1, nz and no, respectively (no>nz>nz); and
the guiding layer thickness is d. By imposing the electromagnetic boundary conditions upon Equation

2 at both interfaces of the waveguide we can relate the structural and optical parameters of the
2
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waveguide with the effective refractive indices of the guide-modes nefr explicitly, via the so-called
characteristic equations. The characteristic equations for the transverse electric (TE) and transverse

magnetic (TM) polarized guide-modes can be written ast?!

n2__ _n2 n2_ _n2
_ f, _ ff, 2
Koy/M§ —Nirred = tan™ | Y—=—— | +tan | S—== +pz (S9)
n,—n n,—n
0 eff, TE 0 eff, TE
and
2 2 2 2 2 2
| n Nestrm — My 1 N Nettrm — Ny
Koy/No = Niryd =tan™ n—gZ—z +tan™ n—‘;ez—z +qz (S10)
1 4/No — Negrrm 2 ANy = Negrrm

respectively. In Equation S9 and S10, p and q are the order numbers of TE and TM polarized
eigenmodes, respectively.

Shown in Figure S1d are the thickness dispersions of eigenmodes in the planar waveguide, obtained
by solving Equation S9 and S10 numerically. In the limit as d approaches the cut-off thickness of
each guide-mode, nest of the relevant mode approaches the substrate refractive index na,
corresponding to the critical state that the photons are about to leak out of the guiding layer and
propagate freely in the substrate; In the limit as d approaches infinity, nert’s of all the guide-modes
approach the guiding layer refractive index asymptotically, corresponding to the situation that the
photons propagate freely in a bulk material of refractive index no. Besides these two extreme
situations, the dispersion curves of different eigenmodes never intersect with each other. Therefore,
for a waveguide with a definite guiding layer thickness, its different eigenmodes cannot possess the
same effective index of refraction. The same non-crossing behaviour of the dispersion curves in
Figure S1d as that manifested in Figure S1b is a piece of convincing evidence for the validity of the

optical nondegeneracy theorem.
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Figure S1. Nondegeneracy of eigenmodes in 1D potential well and planar waveguide. a) Asymmetric
finite 1D square potential well V(z) for electrons. b) Energy level evolution of different bound electron
eigenmodes in the potential well illustrated in a with respect to the potential width, obtained by
solving Equation S1 numerically, n is the mode order. ¢) Refractive-index profile n(z) of the Air-Si-
SiO2 three-layer waveguide. d) Thickness dispersions of TE and TM polarized eigenmodes in the
planar waveguide illustrated in c.

2. Anisotropy-induced nondegeneracy violation in van der Waals waveguide

In quantum mechanics, the nondegeneracy theorem can be violated by introducing singularities into
the 1D potential;®% however, the corresponding refractive-index profiles containing singularities
cannot be realistically established in the real optical system, new strategy is necessary to circumvent
the optical nondegeneracy theorem.

Since the TE and TM guide-modes are orthogonally polarized, their respective electric field

components experience different components of the refractive-index tensors. In a planar waveguide

made of exclusively isotropic materials, the optical nondegeneracy theorem always holds; however,
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if anisotropic materials are introduced into the waveguide, the refractive-index profile would split,

and this provides us with the possibility to defy the optical nondegeneracy theorem.
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Figure S2. Anisotropy-induced optical degeneracy of eigenmodes in planar waveguides with
uniaxially anisotropic guiding layers. a)-b) Thickness dispersions of ordinary and extraordinary
eigenmodes in planar waveguide with positively and negatively anisotropic guiding layer,
respectively. ¢)-d) Electric field distributions of degenerate eigenmodes indicated in a and b by the
blue stars, respectively.

Shown in Figure S2a and Figure S2b are the thickness dispersions of the eigenmodes in a planar
waveguide with a positively and negatively anisotropic guiding layer, respectively, obtained by
solving Equation 2 and 3 in the main text numerically. There are two intriguing features in both
Figure S2a and Figure S2b: the grouping yet non-crossing of guide-modes with the same polarization
state, and the crossing of guide-modes with different polarization states. Specifically, in the case of a
positive guiding layer, as d approaches infinity, n.ss for the TM (TE) polarized extraordinary

(ordinary) eigenmodes approach asymptotically to the value of ne (no). Since ne>no for a positive

guiding layer, there are always intersection points for the thickness dispersion curves of the TE and

5
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TM polarized modes with the same order number; the Ith order TE mode intersects with all the TM
modes of the order number >I. In the case of a negative guiding layer, by the same argument, the Ith
order TM mode intersects with all the TE modes of the order number >I+1; however, none dispersion
curves of the TM modes intersect with that of the fundamental TE mode. At these intersection points
(like the ones indicated by blue stars), although the two crossed guide-modes are of different electric
field distributions as shown in Figure S2c and Figure S2d, they share the same effective refractive
index. Therefore, the optical nondegeneracy theorem can be violated in a well-designed anisotropic
waveguide.

3. Modal birefringence tunability of air-Si-SiO, waveguide
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Figure S3. Thickness dispersions of TE and TM polarized modes in air-Si-SiOz three-layer
waveguide. There is no intersection point between dispersion curves of different modes, accordingly,
the modal birefringences can only be tuned in magnitude in limited ranges and usually display non-
monotonicity with respect to the guiding layer thickness as shown in the inset.
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4. Near-field images of MoS; microcrystals with different thicknesses
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Figure S4. Near-field images of MoS2 microcrystals with different thicknesses

References

[1] L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford 1977.

[2] K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis, John Wiley & Sons, New
York 2001.

[3] R. Loudon, Am. J. Phys. 1959, 27, 649.

[4] S. Kar, R. R. Parwani, EPL 2007, 80, 30004.

[5] R. Loudon, Proc. R. Soc. A 2016, 472.



	MainText-Tunable Modal Birefringence in a Low-Loss Van Der Waals Waveguide
	SI-Tunable Modal Birefringence in a Low-Loss Van Der Waals Waveguide

