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Compensating losses in polariton 
propagation with synthesized complex 
frequency excitation

Fuxin Guan     1,5, Xiangdong Guo1,2,5, Shu Zhang2,5, Kebo Zeng     1, Yue Hu    1                , 
Chenchen Wu2, Shaobo Zhou     1, Yuanjiang Xiang3, Xiaoxia Yang     2, 
Qing Dai     2    & Shuang Zhang     1,4 

Surface plasmon polaritons and phonon polaritons offer a means of 
surpassing the diffraction limit of conventional optics and facilitate efficient 
energy storage, local field enhancement and highsensitivity sensing, 
benefiting from their subwavelength confinement of light. Unfortunately, 
losses severely limit the propagation decay length, thus restricting the 
practical use of polaritons. While optimizing the fabrication technique can 
help circumvent the scattering loss of imperfect structures, the intrinsic 
absorption channel leading to heat production cannot be eliminated. Here, 
we utilize synthetic optical excitation of complex frequency with virtual 
gain, synthesized by combining the measurements made at multiple real 
frequencies, to compensate losses in the propagations of phonon polaritons 
with dramatically enhanced propagation distance. The concept of synthetic 
complex frequency excitation represents a viable solution to the loss 
problem for various applications including photonic circuits, waveguiding 
and plasmonic/phononic structured illumination microscopy.

Polaritons, including surface plasmon polaritons (SPPs)1–3 and phonon 
polaritons (PhPs)4,5, have emerged as highly promising candidates for 
constructing nanophotonic circuits6–8, enabling the development of 
ultracompact and high-speed optical devices. Utilizing polaritons in 
nanophotonics provides a pathway to overcoming the diffraction limit 
of light, allowing for the control of light at the nanoscale9–11. However, the 
intrinsic losses have hindered many loss-sensitive applications based on 
polaritons12, including waveguiding13, biosensing14–17, sub-diffraction-limit 
imaging18–21 and plasmonic structured illumination microscopy22. Intrinsic 
loss negatively impacts polaritons in two primary ways: (1) the propaga-
tion distances are significantly reduced, and (2) the dispersion curves of 
polaritons far from the light cone are strongly blurred, which severely 
affects the applications of subwavelength behaviours of polaritons.

The intrinsic loss is caused by the imaginary part of the dielectric 
function in a material, such as the Ohmic loss in plasmon systems 
and the lattice vibration relaxation process in phonon-polariton sys-
tems23,24. The most commonly used method to offset loss is to incor-
porate an external gain medium25–27. However, it is very challenging to 
completely offset the plasmonic loss with gain, and gain compensa-
tion28–30 is susceptible to noises and instabilities.

Complex frequency waves with virtual gain have been proposed 
to counteract losses in plasmonic/phononic materials for various 
applications, including super-resolution imaging31–33, long-range 
propagation34, slow light35–38, coherent virtual absorption39, light 
superscattering40 and virtual parity-time symmetry41. The concept of 
complex frequency waves has also been extended to acoustic systems42. 
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introduces decay to the propagation of SPPs. It is intuitive to think that 
the complete compensation of the propagation loss of SPPs could be 
achieved by fully compensating the loss in the Drude model with a 
specific complex frequency ω̃ = ω − iγ/2. However, this is not entirely 
accurate, as there is still a frequency-dependent term ω̃ in the disper-
sion formula that can result in an imaginary component on wavevec-
tors. The true condition for complete loss compensation is indeed 
given by Im(k) = 0, which leads to

β ≈ γω2
pω

2/ (2(ω2       
p − εrω2        ) 

2
+ 2εrω4           ) (1)

where ω̃ = ω − iβ, ω corresponds to the central frequency and β rep-
resents the virtual gain, with details of the derivation provided in Sup-
plementary Section 1. The loss compensation condition for a Lorentz 
model εm = εr − ωp

2/(ω2      + iωγ − ω0
2              ) is also provided in Supplementary 

Section 1, where ω0 is the resonance frequency. This condition ensures 
that the imaginary part of the wavevector is zero, which in turn implies 
that there is no spatial growth or decay of the SPPs along the interface. 
Therefore, to achieve a complete loss compensation for the polariton 
propagation, it is necessary to find appropriate values for the imaginary 
part of the frequency.

As an example, we assume a realistic plasmonic metal described 
by the Drude model with ε = 5 − ωp

2/(ω2     + iωγ), where ωp = 1.442 × 1016 Hz 
and γ = 3 × 1014 Hz. The metal supports SPPs below the plasma fre-
quency. An infinitely long antenna placed on the flat plasmonic metal 
serves as an SPP source when illuminated by light. The excited field 
distributions of SPPs are displayed in Fig. 1a. As the frequency increases, 
the propagation distance of the SPPs decreases, which means that SPPs 
at higher frequencies have shorter propagation lengths due to their 
stronger confinement to the interface. The corresponding Fourier 

Complex frequency waves feature temporal attenuation, which 
requires a precise exponential decay profile in time and time-gated 
measurements, which are challenging for experimental implemen-
tation in optics. Recent research has introduced a multifrequency 
approach to synthesizing the system response under complex fre-
quency excitation in experiment by combining multiple real frequency 
measurements32, which has shown promise in restoring the imaging 
performance of superlenses, typically degraded by intrinsic losses.

Here, we demonstrate the compensation of propagation loss for 
highly confined PhPs via virtual gain, implemented by the complex fre-
quency approach. The key to the compensation of the propagation loss 
lies in the offsetting of the imaginary part of the in-plane wavevector 
instead of the imaginary part of the permittivity, which is implemented 
in the mid-infrared regime. Furthermore, our results provide insight 
into the wave-packet dynamics of spatiotemporal evolution of the 
polariton propagation, with the propagation length of the complex 
frequency signal much longer than that of the real frequency. This 
opens up new possibilities for various applications such as photonic 
integrated circuits, biosensing and microscopy.

Typical materials that support SPPs/PhPs can be described by the 
Drude model, Lorentz model or multi-Lorentz model43, which contain 
loss terms that result in the imaginary part of the in-plane wavevector. 
The wavevector is dependent on frequency, and thus a certain imagi-
nary part of the complex frequency is required to offset the imaginary 
part of the in-plane wavevector. For simplicity, we start with an example 
of SPPs at an interface, whose mathematical solution is given by 
k = ω√εm/(c√1 + εm) with k denoting the SPP wavevector, where we 
assume that the permittivity of plasmonic metal is described by a Drude 
model εm = εr − ωp

2/(ω2     + iωγ) with εr, ωp and γ corresponding to the 
dielectric constant at infinite frequency, plasma frequency and dissipa-
tion term, respectively. The dissipation term in the denominator 
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Fig. 1 | Concept of loss-compensation for polariton propagation using 
synthetic wave of complex frequency. a, SPP propagation distribution 
as a function of frequency launched by an infinitely long antenna. b, The 
corresponding Fourier distribution of the propagation field, where the wave 
vector (x-axis) ranges from 0 to 42.4 μm−1, and the frequency (y axis) ranges from 
600 THz to 930 THz. c, The imaginary part of the complex frequency, i.e., virtual 
gain, as a function of its real part derived from equation (1). d, The synthetic 
Fourier distribution in the complex frequency domain under the condition 
Im(k) = 0. e, The spatiotemporal dynamics at complex frequency excitation of 

(700 - 6.73i) THz, with its real part indicated by the lower dashed line position in 
d. f, The electric field distribution at (700 - 6.73i) THz (top) and (850 - 17i) THz 
(bottom), as indicated by the two dashed lines in d. g, Schematic of s-SNOM 
experimental set-up with a gold antenna on top of an hBN flake. Illumination on 
the antenna excites the PhPs and electric field distribution is measured by the 
probe. h, The near-field distributions at two real frequencies of 1,451 cm−1 and 
1,477 cm−1. i, The corresponding complex frequency near-field distributions. 
Bright and dark colours correspond to maximum and minimum values.
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distributions of the SPPs are depicted in Fig. 1b. It is shown that the 
modes at high frequencies are blurred and eventually become invisible. 
The complex frequency can then be utilized to counterbalance the 
plasmonic loss and achieve complete loss compensation. The imagi-
nary frequency fi is calculated using equation (1) and plotted in Fig. 1c. 
It is shown that as the real frequency increases the imaginary frequency 
also increases monotonically to overcome the propagation loss. How-
ever, a complex frequency wave (temporally attenuated wave) is 
unphysical as the energy approaches infinity as time approaches nega-
tive infinity. Therefore, a truncation at the start of time is necessary to 
rationalize the complex frequency wave. The truncated complex fre-
quency wave with temporal attenuation e−iω̃t θ(t) can be transformed 
into the real frequency domain via Fourier transformation with θ(t) 
being the Heaviside step function: 0 for t <0 and 1 otherwise, and the 
corresponding spectrum distribution has a Lorentzian lineshape 
1/(iω̃ − iω′) where ω′ is the real frequency. Thus, the complex frequency 
field distribution can be synthesized via linear combination of the real 
frequency field distributions as32

E (ω̃, r, t) = ∑
i
E (ω′

i
, r) e−iω′i tΔω/ (2πi (ω̃ − ω′

i
)) (2)

where the imaginary part of the complex frequency is obtained from 
equation (1). The dispersion under complex frequency excitation is 
shown in Fig. 1d, which fully recovers the dispersion at higher frequen-
cies. The corresponding mathematical derivation and temporal evolu-
tion information are shown in Supplementary Section 2 and 
Supplementary Fig. 1. The dynamic evolution of the complex frequency 
excitation at ̃f = (700 − 6.73i)THz   (its real part is indicated by the 
bottom dashed line in Fig. 1d) at different moments is depicted as  
Fig. 1e. An interesting observation is that as time increases the propa-
gation distance extends linearly, but the amplitude remains uniform 
at different positions. This provides a direct visualization of lossless 
propagation of SPPs for a complex frequency excitation, which is in 
sharp contrast with that at the real frequency. The corresponding 

spatial field distribution at t = 5.5 × 10−2 ps is illustrated in the upper 
panel in Fig. 1f. We also plot the field distribution at a higher complex 
frequency ̃f = (850 − 17i)THz (indicated by the upper dashed line in 
Fig. 1d), with the result shown in the lower panel in Fig. 1f, which also 
shows much slower decay in comparison with the real frequency case.

The compensation of loss applies not only to metals described by 
the Drude model, but also to materials with more complicated dielec-
tric functions, such as van der Waals materials that support PhPs. There 
is always a specific complex frequency solution for a PhP that satisfies 
Im(k) = 0. Here we consider a hexagonal boron nitride (hBN) film, which 
supports in-plane isotropic PhPs43–47, and show that complex frequency 
can be utilized to compensate its intrinsic loss to observe lossless 
propagation of the PhP. The experimental set-up, based on the 
scattering-type scanning near-field optical microscopy (s-SNOM) 
technique, is illustrated in Fig. 1g. A long gold antenna placed on the 
hBN film is used to launch the one-dimensional PhPs (details in Sup-
plementary Fig. 2). The electric field distributions are measured at 
frequencies ranging from 1,421 cm−1 to 1,503 cm−1, with a step of 2 cm−1, 
with all field plots provided in Supplementary Fig. 3. Two field distribu-
tions with real frequencies of 1,451 cm−1 and 1,477 cm−1 are chosen as 
the central frequencies to synthesize complex frequency responses at 
̃f1 = (1,451 − 4.5i) cm−1 and ̃                       f2 = (1,477 − 6i) cm−1. The corresponding 

imaginary part represents the optimized value at each frequency to 
achieve the longest propagation. The field distributions at the two real 
frequencies and at the corresponding complex frequencies are dis-
played in Fig. 1h,i, respectively. The experimental results demonstrate 
that, while the propagation at the real frequencies suffers strong 
attenuation, the polariton at the complex frequencies experiences 
almost no decay along the propagation.
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Fig. 2 | AFM (top left panel) and s-SNOM (other panels) imaging in the  
vicinity of an antenna on an MoO3 film that supports hyperbolic PhPs.  
The excitation frequencies in the unit of wave numbers are labeled in each panel 
of the near-field distributions. Bright and dark colours correspond to maximum 
and minimum values.
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Fig. 3 | Synthetic s-SNOM imaging with a complex frequency of 
̃fff = (910 − 6.5i) cm−1 in different transient snapshots and at different 

synthesized real frequencies. a, The synthetic field in different transients with a 
total of 53 frequencies, ranging from 891 to 943 cm−1. The temporal interval 
between the photographs is 0.53 ps, and the starting time is 1.06 ps. b, Imaging 
patterns with different numbers of synthetic frequencies, where the central 
frequency is fixed at 910 cm−1 and the frequency interval is fixed at 1 cm−1.  
The patterns are labelled with their corresponding numbers of frequencies.
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We next apply the complex frequency approach to investigate 
the temporal evolution of more complicated field distributions sup-
ported by a thin film of van der Waals crystal α-MoO3, which is highly 
anisotropic and supports natural in-plane hyperbolic polaritons48–54. 
A gold antenna is placed on the MoO3 film to excite the PhPs, with the 
atomic force microscopy (AFM) image displayed in Fig. 2 (details in Sup-
plementary Fig. 4). The near-field distributions on the MoO3 interface 
measured by s-SNOM at different frequencies are shown in Fig. 2. The 
overall frequency range spans from 891 to 943 cm−1 with an interval of 
1 cm−1. Only nine field plots are presented in the figure while the others 
are displayed in Supplementary Figs. 5 and 6. The field distribution 
variation exhibits a characteristic hyperbolic propagation behaviour 
with a concave wavefront. With increasing frequency, the wavelength 
decreases with a stronger field confinement, and meanwhile the propa-
gation becomes more attenuated. At all measured frequencies, the 
decay lengths of the polaritons are less than two wavelengths due to 
the significant intrinsic loss of the material.

We next insert all these electric field distributions, including 
both amplitude and phase information, into equation (2) to obtain 
the time-dependent field evolution with complex frequency. The 
synthesized electric field distributions at the complex frequency 
(910 − 6.5i) cm−1 and at different temporal moments are depicted in 
Fig. 3a, with a temporal step of 0.53 ps. Interestingly, for small t, the 
noise is largely smoothed by the summation of multifrequency signals. 
As time goes on, the wave travels farther and farther up, extending 
substantially beyond the decay length of two wavelengths at real 
frequencies. The two-dimensional field plot reaches its optimum 
at around 4.24 ps with the propagation length of 8.7 μm (along the 
vertical direction), while the corresponding propagation length 
of the central real frequency is only 1.6 μm. Thus, the propagation 
length under this complex frequency approach is increased more 
than fourfold compared with that of the central real frequency. Other 
complex frequency results are displayed in Supplementary Fig. 7, and 
all show much longer propagation distance than the corresponding 
real frequencies. On further increasing t, the noise starts to become 
dominant, as the signal continues to attenuate in the time domain. As 
time exceeds 4.77 ps, the field distribution begins to exhibit chaotic 
behaviour. A dynamic representation of spatiotemporal evolution is 
shown in Supplementary Video 1. It should be noted that the longer 
the propagation time the greater the propagation distance, but the 
magnitude of the signal field becomes weaker. When the magnitude 
of the signal field drops to the same level as that of the noise, the sig-
nal carried by the polariton will be distorted by the noise. Thus, there 
exists a trade-off between the longer propagation and the signal–noise 
ratio when deciding the optimal time for constructing waves in the 
complex frequency domain.

The effect of the number of frequency points is also investigated, 
as shown in Fig. 3b, with the frequency step fixed at 1 cm−1 and the tem-
poral snapshot fixed at 4.24 ps. It is evident that the field plot with nine 
frequency points is already substantially improved compared with that 
of real frequency. As the number of frequencies increases to 21, the 
decay length continues to increase. However, further increasing the 
number to 39 does not provide obvious improvement.

We further apply the complex frequency approach to investigate 
the interference behaviour of PhPs. Two circular antennas with dif-
ferent diameters (~0.8 μm and ~3 μm) are fabricated on the MoO3 
film (details in Supplementary Fig. 8) to excite the PhPs, as shown in 
Fig. 4a. The field distribution inside the white dashed box is scanned 
using an s-SNOM probe, with the amplitude and real part of the 
electric field distribution at a frequency of f = 990 cm−1 shown in the 
top and bottom panels of Fig. 4b, respectively. The PhPs emanating 
from the two antennas propagate towards each other, but they do 
not form discernible interference fringes due to the strong attenu-
ation. By synthesizing the field plots at the complex frequency 
̃f = (990 − 2i) cm−1, the intrinsic loss in the MoO3 film is compensated 

for, thereby enabling longer propagation of PhPs. This facilitates the 
formation of clear interference patterns between the antennas, as 
shown by Fig. 4c. The dynamic behaviour is displayed in Supplemen-
tary Video 2, which exhibits the interesting features of a negative 
phase velocity and a slow group velocity, because of the negative 
slope of dispersion of the PhPs across this frequency range. All the 
measured field distributions at different real frequencies for con-
structing the synthesized complex frequency field plot are provided 
in Supplementary Figs. 9 and 10.

In conclusion, we have implemented the complex frequency 
approach to dramatically enhance the decay length of highly confined 
PhPs, achieving nearly complete loss compensation that is only limited 
by the noise level. This concept is general and can be easily extended 
to other frequency regimes and to other types of wave, including 
acoustic and elastic waves. The ability to achieve loss compensation 
for propagation of PhPs via virtual gain has significant implications 
for a wide range of applications, including the development of pho-
tonic integrated circuits, where the ability to transmit information 
over longer distances is critical for ensuring the performance and 
reliability of the circuit.
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Fig. 4 | Investigation of interference of PhPs from two different circular 
antennas on MoO3 flake. a, AFM image of the experimental sample. The bulges 
correspond to the positions of the antennas. b, The amplitude and real part of the 
near-field distribution at 990 cm−1 measured using s-SNOM. The scan region is in 

the dashed box of a. c, The amplitude and real part of the near field at the 
synthetic complex frequency ̃f   = (990 − 2i) cm−1, synthesized using a total of 26 
frequencies; the corresponding temporal snapshot is 11.14 ps. The dashed boxes 
correspond to the strong-interference region.
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Methods
High-quality hBN and MoO3 flakes were obtained by mechanically 
exfoliating the corresponding bulk crystals. These flakes were sub-
sequently transferred using a polydimethylsiloxane stamp onto  
Si wafers coated with a thin film of SiO2 of 280 nm thickness, or  
gold substrates. Then gold antennas were patterned on the MoO3 
and hBN flakes using electron-beam lithography followed by a lift- 
off process. The lift-off process consists of deposition of 10 nm Cr  
and 100 nm Au using an electron beam in a vacuum chamber,  
and removal of the polymethylmethacrylate in a hot acetone bath 
(60 °C, 40 min) followed by a gentle washing with isopropyl alcohol. 
The morphologies of the samples are illustrated in Supplementary 
Figs. 2, 4 and 8.

The near-field measurement was performed using a scatter-
ing scanning near-field optical microscope (neaspec) combined 
with a widely tunable mid-infrared optical parametric oscillator 
laser (550–2,200 cm−1). A parabolic mirror was employed to focus  
the p-polarized incident beam onto both the AFM tip and sample  
at an incident angle of 52°. The AFM tip has an apex radius in the  
range 10–20 nm. The tapping frequency of the tip was around 
270 kHz, with amplitudes ranging from 50 to 100 nm. To remove 
the influence of the background on the near-field scattering,  
we combined interferometric measurement of the light backscat-
tered by the tip with demodulation of the detected signal at multiples 
of the tapping frequency (typically second or third harmonics).  
The amplitude and phase of the signal can be independently obtained 
via phase modulation of the reference beam. For more detailed 
information, please refer to Supplementary Section 3 and Supple-
mentary Fig. 11.

The electromagnetic simulations were performed using the 
commercial full-wave finite-element method software COMSOL 
Multiphysics. A flat interface of air/dispersive Drude model with 
εm = 5 − (1.44 × 104  THz)2        /[ω2      + (3 × 102              THz)iω] supports SPPs com-
posed of both x- and y-polarized electric field. A metal antenna, 80 nm 
in width, was placed on the two-dimensional interface, and normally 
illuminated with an x-polarized plane wave to excite the SPPs on the 
interface. Perfectly matched layer boundaries were employed in both 
x and y directions in the two-dimensional simulation to absorb the 
clutter waves. The simulation frequency range was swept from 500 to 
1,030 THz with a frequency gap of 0.5 THz. We recorded the y-polarized 
electric field of each frequency just above the interface to synthesize 
the complex frequency wave.
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