Plasmonic extinction of gated graphene nanoribbon array
analyzed by a scaled uniform Fermi level
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A uniform Fermi level profile is typically assumed in the analysis of a gated graphene nanoribbon, whose Fermi
level is actually nonuniform in the experimental measurements. Here, we show that the uniform Fermi level has to
be downshifted when it is used to analyze a backgated graphene nanoribbon array (GNRA). The plasmonic extinc-
tion behaviors of the GNRAs are perfectly preserved by assuming properly scaled uniform Fermi levels. The scaling
factor is independent of the average value of the actual Fermi level profile, but it is a function of the ratio of the
nanoribbon width to the distance of the nanoribbons from the backgate. This study facilitates the data postprocess-

ing in the experiments, and may be helpful for analyzing the electron behaviors in GNRAs.
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Theoretical and experimental works have shown that
plasmons can be supported by graphene, a one-atom-
thick graphite layer [1,2]. The graphene-based plasmons
exhibit better field confinement in terahertz frequencies
[3,4] compared with the plasmons supported by noble
metals, and can be easily tuned by chemical [5,6] or
electrostatic [7-11] doping. In particular, the confined
plasmonic modes in graphene micro/nanoribbons have
attracted much attention [4-8,12-16], partly because they
can be excited directly by normally incident terahertz
illuminations [5-8]. The plasmonic resonances were
monitored by a characteristic extinction peak in the
experimental studies [5-8], where the peak position
(resonance frequency, v,) varied with the doping level
(quantified through Fermi level, Er) and the ribbon
width, w.

In practice, the carrier density distribution in an
electrostatically doped graphene ribbon is inhomo-
geneous, yielding a nonuniform Fermi level profile
[17-19]. In contrast, chemical doping often yields uni-
form Fermi level profiles [6]. The plasmonic response
of a graphene ribbon with a nonuniform Fermi level pro-
file differs from that with a uniform Fermi level profile
[19]. Nonetheless, the resonance frequency associated
with the nonuniform Fermi level profile can be approxi-
mated by assuming a properly scaled uniform Fermi level
[19]. Assuming uniform Fermi level simplifies the data
processing in the experimental studies on gated gra-
phene ribbons [6-8], and also facilitates the comparison
between the experimental spectra of graphene structures
with electrostatic doping and those with chemical
doping.

In this Letter, we study the scaled uniform Fermi level
(denoted by E¢T) in terms of the actual Fermi level
profile of gated graphene ribbons and the geometry of
the doping configuration. We focus on the first-order
plasmonic resonance of graphene nanoribbon arrays
(GNRAs) in the backgated configuration, owing to the
great experimental interest [7,8]. The assumed uniform
profile E%ff depends linearly on the average value of
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the actual Fermi level profile. The effect of assuming
Er(x) equal to the uniform profile E$ on the resonance
frequency, as well as the extinction maximum of the
backgated GNRAs, are discussed. Finally, we propose
an expression for the relationship between the uniform
Fermi level and the actual Fermi level profile induced
by electrostatic doping.

The Fermi level profile of a graphene nanoribbon in the
backgated configuration [inset of Fig. 1(a)] is obtained
from the approach provided in [19]. Figure 1(a) shows
the normalized Fermi level profiles, Er(x)/(Er), with

—_
) &
&

&\i 30
R
2w
A
v(THz)
Fig. 1. (a) Fermi level profiles normalized to their average val-

ues of backgated graphene for w/d = 1 (solid), 4 (dashed), and
20 (dotted). The backgated configuration and light polarization
direction are shown in the inset. (b) Equivalent relative permit-
tivity (real part) of backgated graphene ((E) = 0.4 eV). (c) Ex-
tinction spectra of a GNRA (w = 100 nm) with uniform Fermi
level (dotted) and nonuniform Fermi level with w/d = 1 (solid)
and w/d = 4 (dashed) under doping level of (Er) = 0.4 eV.
(d) Snapshot of E, near field of a backgated GNRA with w =
d =100 nm and (Ep) =0.4 eV at extinction maximum of
34.47 THz.
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the ratio of the ribbon width to the distance between the
nanoribbon and the backgate, w/d, equal to 1 (solid), 4
(dashed), and 20 (dotted). The profile tends to be flat as
the ratio of w/d increases. The nonuniform profile ap-
proaches the uniform profile, i.e., Er(x) - (Er), when
w/d becomes extremely large. We characterize the Fermi
level distribution by its average value and the ratio of
w/d. The Er(x) profile of each nanoribbon in a GNRA
is assumed to be identical to that of only one nanoribbon,
ignoring the interaction of the adjacent nanoribbons.

The optical responses of GNRAs are simulated by us-
ing the finite element method. For simplicity, GNRAs are
assumed to be freestanding under ambient conditions.
The fraction of the array period occupied by the gra-
phene nanoribbon is fixed at 1/2. The terahertz incident
lights impinge perpendicularly on GNRAs. To implement
the finite element calculations, the graphene is modeled
as a material with a finite thickness and a phenomeno-
logical equivalent permittivity, which is thickness depen-
dent. In our simulations, the graphene thickness (d,) is
set to be 1 nm, at which value the calculations reach
proper convergence. The equivalent relative permittivity
is derived from the two-dimensional conductivity of
graphene and is given by ¢, = ic/eywd, [9].

Here, ¢, is the free space permittivity, w = 2zv is
the light angular frequency, and ¢ = 6(w, Ep, 7, T) is the
complex conductivity of graphene calculated from the
Kubo formula [20]. The relaxation time 7 is obtained from
T=ukp/ ev%, where e is the electron charge, u =~
10,000 cm?/(V - s) is the measured dc mobility, and vy ~
1 x 10° m/s is the Fermi velocity [4]. The temperature T
is assumed to be 300 K. Accordingly, the equivalent
relative permittivity as a function of x can be obtained,
as shown in Fig. 1(b), for w/d =1 (solid), 4 (dashed),
and 20 (dotted), under doping level of (Er) = 0.4 eV.

The extinction spectra of a GNRA with ribbon width
w = 100 nm under doping level of (Er) = 0.4 eV for
d = 100 nm, 25 nm, and 0 (uniform profile) are shown
in Fig. 1(c). The resonant modes corresponding with
the extinction maxima are the first-order plasmon
modes, as confirmed by the E, near field shown in
Fig. 1(d). For a uniformly doped GNRA, the resonance
frequency is determined by the doping level [7]. How-
ever, for a backgated GNRA, the resonance frequency
moves to the higher frequencies as the ratio of w/d
increases, with the average doping level being fixed
[Fig. 1(c)]. Next, we first restrict ourselves to the case
for w/d = 1 to obtain the relation between the assumed
uniform Fermi level E¢T and the average Fermi level of
the gated GNRAs. Then we discuss the dependence of
E¢T on the ratio of w to d.

Figure 2(a) shows the dependence of the resonance
frequency on the average Fermi level for the uniform
(dashed) and nonuniform (solid) doping levels. The fre-
quency of the plasmonic resonance increases with in-
creasing doping level and decreases with increasing
nanoribbon width. The resonance frequency of a GNRA
with the actual nonuniform Fermi level profile is less
than that with the uniform Fermi level profile for a fixed
value of average Fermi level. Hence, the uniform Fermi
level has to be downshifted in order to fit the resonance
frequency with the actual Fermi level profile, when the
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Fig. 2. Resonance frequency (a) v, and extinction maximum
(b) a,, varying with the average Fermi level (Ey). Solid, nonuni-
form Er profiles (d = w); dashed, uniform E profiles. In the
inset of (b), w is equal to 100, 200, and 300 nm along the dashed
arrows.

uniform Fermi level is assumed to describe the reso-
nance frequency of the actually gated GNRA. We denote
the difference between the average value of the actual
Fermi level profile and the properly scaled uniform Fermi
level by sy, i.e., s = (Ep) - ESL. The curves of the reso-
nance frequency in terms of the average Fermi level for
the nonuniform and uniform profiles approach each
other as the nanoribbon width increases. Nevertheless,
the quantity s; is independent of the nanoribbon width
at a fixed doping level, as shown in Fig. 2(a).

On the other hand, the extinction maximum (a,) of a
GNRA is mainly determined by the doping level. The ex-
tinction maximum increases with the increasing doping
level for both the uniform and nonuniform Fermi level
profiles [Fig. 2(b)]. The extinction maximum with the
nonuniform Fermi level profiles is below that with the
uniform Fermi level profiles. Consequently, a down-
shifted uniform Fermi level is required to achieve the
same extinction maximum as the actual nonuniform
Fermi level profile. We denote the difference between
the average Fermi level of the actual profile and the re-
quired uniform Fermi level by s, [Fig. 2(b)]. Although the
extinction maximum slightly increases as the ribbon
width w increases at a fixed average Fermi level, the
quantity s, is found to be independent of the nanoribbon
width, as shown in the inset of Fig. 2(b). We note that the
independence of s; and sy of the nanoribbon width with
fixing the ratio of w to d is attributed to the similarity
of the Fermi level profiles associated with different nano-
ribbon widths.

Both the quantities of s; and s, are proportional to
the average Fermi level of the actually gated GNRAs
for a fixed ratio of w to d [Fig. 3(a)]. They can be
expressed by
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Fig. 3. (a) The quantities of s; and s, varying with the average
Fermi level for w/d = 1. (b) The same for Aa,. The solid,
dashed, and dotted lines correspond with w = 100, 200, and
300 nm, respectively. (c) Extinction spectra of GNRA with w =
100 nm and (E'z) = 0.2, 0.4, and 0.6 eV for the actual Fermi level
profiles (solid) and the uniform Fermi levels given by ESf =
0.91(Er) (dashed). Insets show the zoomed regions around
the extinction peaks.

s1 = 0.09(Ep), sy = 0.1(Ep), (forw/d =1) (1)
respectively, for the configuration with w/d = 1, accord-
ing to linear curve fitting processes. Hence, the required
uniform Fermi level given by E¢$T = (Ey) - s, is also pro-
portional to the average Fermi level. We note that both
the proportionality relations of s; and s, with respect to
the average Fermi level are independent of the nanorib-
bon width. The quantity s; is always less than the quantity
S, at a fixed doping level. Accordingly, the extinction
maximum of a GNRA with the scaled uniform Fermi level
EST deviates from that of the actually gated GNRA.

We denote the extinction maximum of a GNRA with
the actual Fermi level profile subtracted from that with
the uniform Fermi level E¢' by Aa, [inset of Fig. 2(b)].
The quantity Aa, can be written as Aaq, = (S; - ;)
oa,/0ER, where the derivation is in connection with
the uniform Fermi level profiles. Figure 3(b) shows the
dependence of Aa, on the average of the actual Fermi
level profile. The quantity Ae, is almost independent
of the nanoribbon width, and increases from 0 to a maxi-
mum and decreases as the average Fermi level increases
from 0 to 1 eV. The maximum of Ae, appears at the
doping level of (Er) = 0.50 eV and is approximately
equal to 0.7%.

Figure 3(c) shows the extinction spectra of the GNRA
with w = 100 nm for the actual Fermi level profiles
(solid) and the scaled uniform Fermi level profiles E¢T
(dashed) at doping levels (E'r) = 0.2, 0.4, and 0.6 eV. Only
very small distinctions can be observed between the ac-
tual extinction spectra and corresponding spectra with
the scaled uniform Fermi level E¢! [see the zoomed
regions around the extinction peaks in the insets of
Fig. 3(c)]. Moreover, the line shapes of the extinction

spectra are also well preserved. Thus, the deviation
resulting from the assumption of the uniform Fermi level
of ES can be ignored in most of the practical cases. And
all the features of the plasmonic extinction behaviors of
GNRAs can be described by using the scaled uniform
Fermi level.

Since the resonance frequency increases when the
Fermi level profile in a gated GNRA becomes flatter
[Fig. 1(b)], the scaled uniform Fermi level E;ff also de-
pends on the geometry of the backgated configuration.
The quantity s; can be easily obtained with the knowl-
edge that it is linearly dependent on the average Fermi
level for a given ratio of w to d. Figure 4(a) shows the
slope of s; with respect to the average Fermi level,
0s1/d{Er), as a function of the ratio of w to d. The slope
of s; decreases with increasing w/d. For small values of
w/d, the Fermi level profile of a gated GNRA approaches
the narrow ribbon limit [19], and the slope of s; ap-
proaches a maximum. For large values of w/d, the Fermi
level profile tends to be flat, resulting in the slope of s;
being nearly zero.

The slope of s; can be calculated from

ERp) 0.12(w/d) " exp(-0.042w/d), w/d >3’
2

ds1 _ { [(w/d)? - 6.2(w/d)? + 96]/1000, w/d <3

according to least square fitting of the computed data
[see Fig. 4(a) and the inset]. Then the scaling factor,
which is defined by f = 0ES" /0(Er) = 1 - 0s,/d(EF),
can be written as
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Fig. 4. (a) Dependence of the derivative of s; with respect to
the average Fermi level on w/d. (b) The same for the scaling
factor, f. Circles show the computed data. Lines in (a) and
(b) are fitted curves given by Egs. (2) and (3), respectively.
Insets show the zoomed regions for small w/d.
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and the scaled uniform Fermi level can be written as

EST = f(Ep). 4)
As shown in Fig. 4, large values of w/d need small cor-
rections of the Fermi level. When the ratio of w to d
exceeds 10, less than 3% of the Fermi level needs to
be shifted and the scaling factor is more than 0.97.

In conclusion, the extinction behaviors of the plas-
monic resonances in a gated GNRA can be perfectly an-
alyzed by a properly downshifted uniform Fermi level.
The scaled uniform Fermi level is proportional to the
average value of the actual nonuniform Fermi level pro-
file for a fixed ratio of the nanoribbon width to the dis-
tance of the nanoribbon from the backgate, w/d. We
have provided a quantitative study on the scaling factor
in terms of w/d. The expression of the scaled uniform
Fermi level is useful for data processing in the experi-
mental studies on plasmonic responses of GNRAs, and
enables accurate comparison between the plasmonic re-
sponses of GNRAs with electrostatic doping and those
with chemical doping. Our proposed model may be ex-
tended to investigate electronic properties of graphene
nanoribbons, especially nanoribbons with very narrow
widths [21].
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