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Abstract

Graphene electro-optic modulators (GEOMs) are emerging as a viable alternative to conventional
material-based modulators mainly due to their broadband and ultrafast performance. These GEOMs
with combined advantages of small footprint and low energy consumption can potentially enable

various high-performance applications that are not possible using conventional approaches. Here,
we report the first actively Q-switched lasers with a GEOM. In contrast to the previously reported
lasers that are passively modulated by two-dimensional layered material-based saturable absorbers,
our actively modulated laser concept represents significant advantages, such as electrically tunable
output parameters (e.g. output repetition rate, pulse duration and pulse energy) and electro-optical

synchronization. Using a single GEOM, we generate broadband Q-switched pulses at ~1.55 and

2 pm with output energies of up to 123 nJ. This indicates the broadband pulse generation
capability of the graphene-based active devices, superior to widely used bulk material-based active
modulation approaches. Our results demonstrate a simple and viable design towards broadband,
high-repetition-rate, electrically modulated ultrafast lasers for various applications, such as

telecommunications and spectroscopy.

1. Introduction

Pulsed lasers have widespread applications in various
fields such as spectroscopy, industrial materials
processing, and telecommunications [1-4]. Optical
pulse generation methods can be generally classified
as either active or passive. Active ones normally use
externally controlled modulators to actively switch
the intra-cavity light, while passive ones typically
rely on saturable absorbers (SAs) to introduce self-
modulation of the intra-cavity light. Unlike their
passively modulated counterparts, actively modulated
lasers can enable various laser parameters (e.g.
repetition rate, pulse duration and pulse energy)
to be electrically tunable [2—4]. This is particularly
beneficial to various applications. For example, actively
modulated lasers can enable direct synchronization

between the generated pulses and an external electrical
signal for applications, such as optical transmission,
spectroscopy etc, where the optical pulses need to
coincide with an electrical signal or temporal positions
of the optical pulses from different lasers require
temporal coincidence. Further, actively modulated
lasers can produce optical pulses with repetition
rates much higher than their passively modulated
counterparts [2—4]. Bulk electro-optic modulators,
such as lithium niobate (LiNbO3) [5, 6], have been
widely used for actively modulated lasers [1-4].
However, these bulk optical modulators are typically
expensive and complex to fabricate and integrate [5, 6],
and have severe limitations in performance (e.g.
typical operation bandwidth of less than 100 nm
[7]). Therefore, novel electro-optic modulators with
better performance, cheaper fabrication and easier
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integration are of great interest for high performance
actively modulated lasers.

Graphene and other two-dimensional (2d) layered
materials have shown extraordinary physical proper-
ties for various photonic and optoelectronic appli-
cations [8—11]. Indeed, numerous devices based on
2d materials have been proposed and demonstrated,
such as passive SAs [12-24], electro-optic modulators
[25-35], polarizers [36] and photodetectors [37, 38].
Among them, graphene electro-optic modulators
(GEOMs) have been demonstrated as a viable alternative
to conventional material-based modulators due to their
broadband and ultrafast performance, small footprint
and low energy consumption [25-35]. Recently, a par-
ticularly interesting method is undergoing development
to improve the performance of passively modulated
lasers with graphene based electro-optic modulators
[30-34, 39, 40] (i.e. electrically controlled graphene
SAs). For instance, electrically modulated graphene SAs
enable different operation regimes (i.e. Q-switching or
mode-locking) in fiber lasers [31], and can effectively
reduce the self-starting threshold pump power of solid
statelasers [32,33]. However, thus far, graphene actively
modulated lasers have not been demonstrated.

Here, we demonstrate broadband pulsed fiber lasers
actively modulated with a GEOM for the first time.
Unlike the previously reported passively Q-switched
lasers with SAs [12, 19, 20], the repetition rate of our
pulsed lasers is identical to the frequency of the exter-
nal electrical modulation signal, and the laser output
parameters can be directly adjusted by the electrical
signal. This is particularly suitable for various appli-
cations, where precise control of the pulse parameters
(e.g.relative timing) is needed. Large energy pulse gen-
eration at the 1.55 ym telecommunication window (up
to 61 nJ) and 2 ym mid-infrared region (up to 123 nJ)
was realized with a single GEOM. This demonstrates
the wide operation bandwidth of the graphene based
active devices for broadband ultrafast pulse genera-
tion, superior to traditional bulk material-based active
modulation methods.

2. Results and discussion

2.1. Characterizationresults of the GEOM

A schematic of the GEOM is illustrated in figure 1(a).
Double-layer graphene films are separated with an
insulating layer of HfO, to form a capacitor based
modulator configuration [29, 41] (fabrication details
in methods). Figure 1(b) shows an optical microscope
image of the fabricated device, in which the graphene
layers are patterned with a size of 500 x 500 ym?
(indicated in the white dash square, figure 1(b)). The
quality of graphene used in the device is monitored by
optical microscopy and Raman spectroscopy before
and after each step of the fabrication process. After the
device fabrication, the 2D peak of Raman spectrum
(figure 1(c)) is still a single sharp Lorentzian with full
width at half maximum, FWHM (2D) ~29 cm™},

confirming that monolayer graphene has been
successfully transferred. The ratio of D and G peaks
(I(D)/1(G)) ~0.06, showing negligible defects in
graphene.

The RC time constant of electro-optic modulators is
akeyparameter that determines their speed [26,28,30].
We measured the RC time constant of our electro-
optic modulator with a digital impedance analyzer
(HP4192A). Our experimental results indicate that the
modulator has a typical RC time constant of ~2.6 us
(i.e. 3 dB bandwidth of 61.2kHz). It should be noted
that the speed performance of this free-space device is
limited compared to the current state of the art of wave-
guide integrated graphene modulators [25, 26, 30].
We attribute this to the relatively large device footprint
(500 x 500 pm?) and graphene-metal contact resist-
ance (3.25 k) - um). Further improvement of the
device speedis possible (e.g. optimized device structure
and fabrication process [25, 26, 28-33, 35]) for high-
repetition-rate actively mode-locked lasers.

When a voltage is applied on the device, an electric
field is established by the accumulation of induced car-
riers at graphene surfaces. Therefore, the broadband
absorption in graphene can be effectively controlled
by tuning the Fermi energy (Er) of graphene with elec-
trostatic doping. Interband transitions with energy
below 2 x Epbecome forbidden due to Pauli blocking
[42, 43]. To quantify this light modulation effect, we
characterized the optical transmittance of the GEOM
device with respect to the electrical voltage at 1550 nm
wavelength, as shown in figure 1(d). The measured
single-pass optical transmittance increases from
85.51%1t0 86.77% (corresponding to 1.26% absorption
change) when the electrical voltage varies from 0 to 5V
(further increase of applied voltage typically leads to
dielectric breakdown). Note that large transmittance
loss (13.23%) at 5V is mainly due to optical loss of the
device substrate (i.e. ~8% Fresnel loss of the quartz
substrate, ~2% insertion loss of the HfO, layer) and
absorption of graphene (~3.3% in our double-layer
graphene deviceat 5V). These transmittance losses can
be decreased with different approaches (e.g. anti-reflec-
tive coating, low-loss insulation layer coating). Transfer
matrix method (TMM) [44] was used to calculate the
optical absorption at the same wavelength as a function
of the electrical voltage (red curve in figure 1(d), see
methods). The transmittance of our GEOM was cal-
culated to be 85.52% at zero voltage. For the maximum
electrical voltage of 5V, the numerical transmittance
reaches 86.75%, presenting a total change of 1.23% in
the absorption. A relatively low offset between the fitted
curve and experimental results (<0.25% difference in
transmittance, figure 1(d)) isin a reasonable range con-
sidering the inevitable measure deviation in the experi-
ments. We also evaluated the Fermi energy dependence
on the electrical voltage with the method in [45]. The
calculation shows a Fermilevel shift of ~0.17 eV corre-
sponding to the experimental voltage range (i.e. 0-5V,
inset of figure 1(d)). Larger Fermi level shift is possi-
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Figure 1. Schematic illustration and characterization of the GEOM device. (a) Three-dimensional sketch and (b) Optical
microscopic image of our GEOM device. (c) Raman spectrum of graphene after device fabrication. (d) Optical transmittance as
afunction of the electrical voltage from experimental results (blue dots) and theoretical calculation (red curve). Inset: Calculated
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ble through the optimization of the device fabrication
method (e.g. the quality of the deposited dielectric
layer, metal contacts, multilayer graphene) [25, 26,
28-35], which is desirable to increase the modulation
depth of the GEOM.

2.2. Actively Q-switched fiberlaserat 1.55m

We first integrated the GEOM with a fiber laser at
the 1.55 pm telecommunication band for actively
Q-switched pulse generation. The fiber laser with a
ring cavity is schematically illustrated in figure 2(a). A
segment of 0.7 m Erbium-doped fiber (EDF) was used
as the gain fiber. The EDF was pumped by a 980 nm
laser diode (LD) viaa 980/1550 nm wavelength division
multiplexer (WDM). A polarization independent
isolator (ISO) was employed to ensure unidirectional
light propagation. To integrate the GEOM into the
fiber laser resonator, an optical circulator was used to
extract the light out from the ring cavity. A collimating
lens L1 and a focusing lens L2 were inserted into the
beam path, through which the divergent light emission
from the fiber pigtail was collimated and focused,
respectively. The beam was then incident on the
GEOM and reflected back to the fiber laser cavity by a

high reflection mirror M (with a reflectivity of >97%
in the 1500-2000 nm wavelength range) at the focal
point. Accurate alignment of the GEOM position was
realized with a high-resolution (<1 pm) crossed linear
translation stage. The transmittance of the device
(without applied voltage) is constant (~85.5%) when
the distance between the graphene device and the
reflection mirror M is less than 18 mm. The input beam
is blocked by the metal contacts of our graphene device
if the distance is increased further. It is worth noting
that our double-pass integration method can increase
the modulation depth of our GEOM by a factor of two.
This will be effective to modulate the intracavity light
for active pulse generation. A polarization controller
(PC) was used to adjust the birefringence in the laser. A
fiber integrated tunable bandpass filter was inserted to
tune the output wavelength. A 10% coupler was used for
the output. The total length of the laser cavityis ~13 m.

The experimental results of our graphene actively
Q-switched fiber laser at 1.55 pum are shown in
figures 2(b)—(f). When a square voltage (figure 2(b))
was applied in our GEOM to adjust the periodical cav-
ity loss for active Q-switching, a stable pulse operation
was obtained. The amplitude of the square voltage and
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were measured when the output wavelength was 1558.9 nm.

Figure2. Actively Q-switched fiber laser at 1.55 ym. (a) Laser setup. LD, laser diode; WDM, wavelength division multiplexer; EDF,
Erbium-doped fiber; ISO, polarization independent isolator; OC, optical circulator; L1, collimating lens; L2, focusing lens; M,

high reflection mirror; PC, polarization controller. (b) Modulation voltage and synchronized output pulse train. Inset, envelop of
single pulse. (c) Output power comparison with and without the GEOM. Inset, output power stability of the pulse laser in active
Q-switching operation. (d) Wavelength tunable output spectra of the Q-switched laser. (e) Output pulse energy and pulse duration
as a function of the modulation frequency. (f) Radio frequency spectrum at the modulation frequency of 35 kHz with a resolution
bandwidth of 100 Hz. Inset: 500 kHz wide band radio frequency spectrum with a resolution bandwidth of 1kHz. Figures (c)—(f)
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pump power were 3.5V and 90.1 mW, respectively.
Q-switching was not observed in the case without
applied voltage. This confirms that our pulse genera-
tion is mainly contributed by the active modulation of
graphene, i.e. saturable absorption of graphene will not
initiate the pulse generation. The optical pulse genera-
tion (figure 2(b)) could be interpreted by the operation
principle of active Q-switching [2—4]: when the electri-
cal voltage abruptly increases from 0 to 3.5V, the loss of
the GEOM reduces from ~14.5% to 13.2%. This ena-
bles cavity feedback and triggers light amplification by
stimulated emission in the cavity. Due to alargeamount
of pump energy stored in the gain medium, the intra-
cavity light intensity builds up rapidly, which results in
ashort optical pulse with large energy [2—4].

One of the key advantages of actively Q-switched
lasers is that the output repetition rate is always identi-
cal to the modulation frequency of the electrical signal
[2—4], which was clearly observed in our experiment

(figure 2(b)). This further confirms that Q-switching is
dominated by active modulation of graphene. A close-
up image in the inset of figure 2(b) denotes that the typ-
ical pulse duration is around 2 ps. The supplementary
video also shows the output electrical signal and the out-
put pulses (stacks.iop.org/TDM/4/025095/mmedia).
In contrast to the previously demonstrated lasers pas-
sively Q-switched with 2d materials [12, 46—48], in
which the output repetition rate is determined by vari-
ous intra-cavity parameters (e.g. gain, loss, cavity length
[46—48]), our actively Q-switched laser with repetition
rate controlled by external electrical signal is unique.
This can facilitate various applications (e.g. telecom-
munication, spectroscopy and multiple pulse control
[1-4]) where pulse synchronization between different
pulsed lasers or between optical pulses and electrical
signal is critical. It is worth noting that there is a pulse
build-up time (i.e. time delay between the rising edge of
the electrical signal and the peak of the generated opti-
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cal pulses), which can be adjusted by the active modula-
tion parameters (e.g. control voltage and modulation
frequency) [49, 50].

The continuous wave emission was observed at
a pump power of 18.6 mW, which was changed to
Q-switching operation as the applied voltage was
increased to 2 V. The pulse train was stablized at 3.5V.
We measured the output average power of our laser in
the conditions with and without our GEOM (figure
2(c)). The result shows that the output performance of
the laser is slightly affected by the GEOM. For exam-
ple, the slope efficiency reduced from 3.2% to 3% after
inserting the GEOM. The output power of our actively
modulated laser is very stable (~2.6% fluctuation, inset
of figure2(c)). The power fluctuation is mainly contrib-
uted by the instability of our pump laser diode (~2.5%
perturbation in the pump power).

Figure 2(d) depicts the tunable output spectra of the
actively Q-switched laser, indicating the broad opera-
tion bandwidth of our graphene modulator. The typical
FWHM of the output spectrais ~0.05 nm. The output
peak wavelength of the Q-switched laser is tunable from
1524.6 to 1561.7 nm by adjusting the intra-cavity band-
pass filter. Note that the wavelength tuning range here is
mainlylimited by the operation bandwidth of the filter,
rather than the operation bandwidth of the GEOM, as
wealso demonstrate active Q-switching at ~2 ymwith
the same device below.

The output performance (e.g. pulse energy, pulse
duration) of our actively modulated laser can be elec-
trically adjusted by the modulation frequency (sup-
plementary video), significantly different from the
passively modulated lasers. The measured maximum
average output power of the Q-switched laser was 2.14
mW when the pump power reached 90.1 mW, corre-
sponding to thelargest output pulse energy of 61 nJ with
arepetition rate of 35 kHz. As shown in figure 2(e), the
output pulse energy can be adjusted between 61 and 33
nJ (blue dots) ina modulation frequency range from 35
to 65 kHzat the maximum pump power (i.e.90.1 mW).
On the other hand, our modulation frequency change
also leads to the variation of the pulse duration, as
shown by the red dots in figure 2(e). The pulse dura-
tion rises from 1.93 to 5.54 us when the modulation
frequency increases from 35 to 65 kHz. This is because
higher repetition rate corresponds to smaller energy
stored in the cavity per pulse cycle. Therefore, at higher
repetition rate, the stored energy in the cavity releases
in a slower speed, generating longer pulses with less
pulse energy [2—4].

To investigate the output pulse stability of the
Q-switching operation, we measured the radio fre-
quency spectrum of the output pulse train. A signal to
noise ratio (SNR) of ~48 dB (corresponding to ~10°
signal to background contrast) at 35 kHz modulation
frequency was achieved (shown in figure 2(f)). We also
performed the measurement with a frequency range
of up to 500 kHz (inset of figure 2(f)). The spectrum
implies an excellent stability of the output pulses [51].

2.3. Actively Q-switched fiberlaserat2 pum

In principle, due to the graphene’sbroadband operation
capability [17,30,52], our graphene actively modulated
laser concept can be applied for wide band pulse
generation. Under this consideration, we subsequently
investigated our GEOM for active Q-switchingat2 yum
to demonstrate the capability of the optical modulator
for longer wavelength. The voltage dependent optical
absorption at 2 ym was not measured because of the
lack of highly-stable (power variation <1%) light
source and detector in the laboratory. Figure 3(a)
shows the 2 um fiber laser setup with a linear cavity.
The integration devices (including the collimating lens
L1, focusing lens L2, and high reflection mirror M)
tocouplethe GEOM with thelightat 1.55 yum (figure2(a))
were used again for the 2 yum fiber laser. Note that
the position of the mirror M (figure 3(a)) needed to
be carefully adjusted to reduce the coupling loss due
to chromatic aberration of the integration system.
A 2 m Thulium/Holmium co-doped fiber (TH512,
CorActive) was used as gain medium, which was
pumped by a home-made 1570 nm laser through a
1570/2000 nm WDM. A PC was connected to adjust the
laser birefringence. A 10/90 fiber coupler at 2 zm was
used to extract the light out from the 10% port, and the
other ports to form an all-fiber-based reflection mirror.

The actively Q-switched laser performance at
2 pum is shown in figures 3(b)—(f). Figure 3(b) depicts
the output pulse train and modulation signal at a fre-
quency of 57 kHz. The amplitude of the square voltage
and pump power are 3.1V and 420 mW, respectively,
corresponding to a pulse duration of ~3.5 ps (inset
of figure 3(b)). We also observed the synchronization
between the output pulse and modulation signal in our
pulsed fiberlaserat 2 ym. Thisis a typical fingerprint of
active Q-switching, similar to what was observed in our
1.55 um pulsed fiber laser discussed above.

The active Q-switching starts at 314 mW pump
power (figure 3(c)) with a modulation voltage of 3.1 V.
This threshold power is considerably high because
of the relatively large loss of the intracavity optical
components at 2 ym. We measured the average output
power of our laser in the cavity configuration with and
without the GEOM (figure 3(c)). The result also indi-
cates that the output performance of our 2 ym laser is
slightly affected by the GEOM. For example, the slope
efficiency reduced by 0.2% (from 6.3% to 6.1%) after
inserting the GEOM. The output powers in both cases
(with and without GEOM) increase linearly versus the
pump power as expected. The measured maximum
average output power of the Q-switched laser is 7 mW,
with a corresponding pulse energy of 123 nJ at 420 mW
pump power. The output power of our 2 um laser is also
very stable (~2.5% fluctuation), comparable with the
1.55 pm fiber laser. During the experiment, no opti-
cal damage of the device was observed at this opera-
tion power (with a calculated peak power density of
~1.74m]J cm~?), which identifies the robustness of our
GEOM device.
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Figure 3. Actively Q-switched fiber laser at 2 um. (a) Laser setup. THDE Thulium and Holmium co-doped fiber. (b) Modulation
voltage and the synchronized output pulse train. Inset, envelop of single pulse. (c) Output power comparison with and without
the GEOM. (d) Q-switched laser output spectrum. (e) Output pulse energy and pulse duration as a function of the modulation
frequency. (f) Radio frequency spectrum at the modulation frequency of 57 kHz with a resolution bandwidth of 100 Hz. Inset:
500kHz wide band radio frequency spectrum with a resolution bandwidth of 1 kHz.

The output spectrum of the Q-switched laser is pre-
sented in figure 3(d). The peak wavelength is centered
at 1924.5 nm with an FWHM of 0.63 nm. Figure 3(e)
shows the pulse energy and pulse duration characteris-
ticsas a function of the modulation frequency, when the
pump power is fixed to 420 mW (the highest value avail-
ablein ourlab). The pulse energy decreases from 123 to
94.6 nJ (blue dots), and the pulse duration increases
from 3.45 to 5.59 us (red dots), when the modulation
frequency rises from 57 to 74 kHz. These electrically
tunable behaviors are identical to what we observed
with our laser at 1.55 pum.

The output pulse stability of our 2 yum laser was
also studied (shown in figure 3(f)). A ~55 dB SNR
(corresponding to >10° signal to background con-
trast) was measured. We subsequently performed wide
band spectrum measurement with a frequency range
of up to 500 kHz (inset of figure 3(f)). The spectrum
implies highly stable Q-switching operation at 2 ym.
We also carried out investigation on long-term (up to
6 months) operation stability of our GEOM and lasers,

and did not observe any performance degradation in
this time period. Overall, these pulse generation results
at 1.55 and 2 pm prove that our GEOM has a broad
operation bandwidth (up to >400nm) for ultrafast
pulse generation with a flexibly controlled opto-elec-
tronic signal synchronization.

3. Conclusions

In summary, we have demonstrated graphene actively
Q-switched lasers. The results show that all key laser
parameters can be electrically tunable (e.g. repetition
rate, pulse duration, pulse energy). This is completely
different from the previously reported lasers that
are passively modulated by 2d materials based
saturable absorbers. Actively Q-switched pulse train,
synchronized with the electrical modulation signal is
obtained, with a repetition rate varying from 35 (57) to
65 (74) kHz at 1.55 (2) pm. The wavelength tunability
over 37.1 nm bandwidth (from 1524.5 to 1561.7 nm)
at 1.55 pum and stable Q-switching at both 1.55 and




2 pm demonstrate the broadband pulse generation
capability of the GEOM device. Given by the current
state of the art graphene electro-optic modulators (up
to 30 GHz [26, 30]), it is expected that an optimized
device design with improved performance (e.g. larger
modulation speed, higher modulation depth) will
enable active mode-locking for ultrafast (<ps) pulse
generation with much higher (>GHz) repetition rate.
Our results introduce a simple and viable approach
towards actively modulated lasers with high repetition
rate and broad spectral range for various photonic
and optoelectronic applications such as industrial
materials processing and spectroscopy.

4. Methods

4.1. Device fabrication and characterization
Monolayer chemical vapor deposition (CVD) grown
graphene [53] was transferred to a 1.8 x 1.8 cm?
quartz plate (~210 pm thick) by using the method
described in [54]. Bottom contact (titanium/gold,
5/50 nm thickness) to graphene was defined by a
conventional Electron Beam Lithography (EBL,
Vistec EPBG5000pES) followed by a lift-off process.
The graphene sheet was subsequently patterned
into a size of 500 x 500 um? with EBL and reactive
ion etching (RIE). Next, atomic layer deposition
(ALD, Beneq TFS-500) process was used to directly
grow a 30 nm thick HfO, on the graphene sheet as
a high permittivity dielectric layer [55]. Another
CVD grown monolayer graphene was transferred
on the dielectric and patterned as its bottom
counterpart, in order to form the capacitor based
graphene modulator. Metal Ti/Au contact on top
was then fabricated by using the same process as
described above. The graphene quality in the device
is monitored by Raman spectroscopy (Witec alpha
300R, 532 nm excitation) before and after each step
in the fabrication process.

4.2. Simulation of voltage dependent graphene
absorption

Electrical voltage dependent graphene absorption is
typically evaluated with Kubo formula [28, 29, 56] by
taking the dielectric and Fermi level of the graphene
device into account. The equivalent thickness of
graphene monolayers was evaluated [35, 45, 57], and
the calculated refractive indexes were normalized
according to the experimental value reported by [57]
to get realistic results.

4.3. Laser characterization

In order to characterize the actively Q-switched
lasers, a high resolution optical spectrum analyzer
(Anritsu, MS9740A ) was used for the 1.55 pym fiber
laser. The output spectrum of the 2 ym fiber laser was
measured by an infrared optical spectrum analyzer
(WaveScan, APE). An oscilloscope and a frequency
spectrum analyzer (Anritsu MS2692A) connected

with a broadband ultrafast (>25 GHz) photodetector
were used to measure the output pulse train and radio
frequency spectrum for both 1.55 and 2 ym.
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