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Graphene plasmons exhibit significant potential across diverse fields, i ncluding optoelectronics, metama-

terials, and biosensing. However, t he exposure of all surface atoms i n graphene makes i t susceptible t o

surrounding i nterference, i ncluding l osses s temming f rom charged i mpurity s cattering, t he dielectric

environment, and t he substrate roughness. Thus, designing a dielectric environment with a l ong l ifetime

and t unability i s essential. I n t his study, we created a van der Waals ( vdW) heterostructure with graphene

nanoribbons and mica nano-films. Through Fourier-transform i nfrared spectroscopy, we i dentified hybrid

modes r esulting f rom t he i nteraction between graphene plasmons and mica phonons. By doping and

manipulating t he structure of graphene, we achieved control over t he phonon–plasmon r atio, t hereby

influencing the characteristics of these modes. Phonon-dominated modes exhibited stable resonant f re-

quencies, whereas plasmon-dominated modes demonstrated continuous tuning from 1140 to 1360 cm−1

in r esonance f requency, accompanied by an i ncrease i n extinction i ntensity f rom 0.1% t o 1.2%. Multiple

phonon c ouplings l imited f requency modulation, y ielding s table r esonances unaffected by t he gate

voltage. Mica substrates offer atomic l evel flatness, l ong phonon l ifetimes, and dielectric f unctionality,

enabling hybrid modes with high confinement, extended l ifetimes ( up t o 1.9 picoseconds), and a broad

frequency range ( from 750 cm−1 t  o 1450 cm−               1). These properties make our graphene and mica hetero-

structure promising for applications i n chemical sensing and i ntegrated photonic devices.

Introduction

Plasmons, quasi-particles resulting f rom t he coupling of i nci-
dent l ight with f ree electrons i n a conductor, are pivotal i n
transforming t hree-dimensional f ree-space l ight i nto s pecial-
ized l ower-dimensional i nterface electromagnetic waves. This
transformation l eads t o efficient wavelength confinement and
significant field enhancement effects. Compared to traditional
noble metals s uch a s g old a nd s ilver,1,2 t wo-dimensional
materials l ike graphene exhibit unique advantages i ncluding

atomic-level t hickness, d istinct b and s tructures, u ltra-high
carrier mobility, a nd t unable c arrier c oncentration v ia g ate
voltage.3–9 Consequently, the plasmons supported by graphene
demonstrate e xtreme optical f ield c onfinement,10–12 a broad
range of s pectral r esponse f requencies,13–15 ultra-long t rans-
mission l ifetimes,16–19 and dynamic c ontrol c apabilities.20–24

These properties make them suitable for a wide array of appli-
cations, spanning fields from physics and i nformation science
to c hemistry.25–27 N otable a pplications i nclude e nhanced
vibrational s pectroscopy t echniques l ike s urface-enhanced
infrared a bsorption s pectroscopy28–32 a nd s urface-enhanced
Raman spectroscopy33 i n sensor technologies,34 on-chip active
devices such as t unable single-photon sources35 and l asers,3              6

and various passive components i ncluding waveguides, modu-
lators, switches, and detectors.37–42

However, t he s tructural properties of graphene as a t wo-
dimensional material present both advantages and challenges
for surface plasmons. While its single-atom thickness provides
a highly confined platform, i t also makes t he material highly
susceptible t o i nterference f rom t he s urrounding dielectric
environment.17,18,43 This v ulnerability manifests a s multiple
loss mechanisms, i ncluding c harged i mpurity s cattering,
acoustic phonon s cattering, electron–electron s cattering, and
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dielectric l osses, u ltimately l imiting t he q uality f actor a nd
propagation d istance o f g raphene p lasmons. Consequently,
harnessing t he f ull potential of graphene plasmonics hinges
on t he creation of a t ailored dielectric environment t hat pro-
motes long plasmon lifetimes and tunability.

Significant efforts have been directed t owards i dentifying
suitable dielectric substrates for graphene plasmonics. Various
high-quality d ielectric s ubstrate materials, s uch a s s ilicon
carbide ( SiC),44 s ilicon d ioxide ( SiO2),

45 b oron n itride
(h-BN),46,47 and suspended structures,18,48 have been employed
as substrates f or graphene plasmons i n r ecent years. Among
these, we have s uccessfully manufactured f lexible g raphene
plasmon devices using t hick mica s ubstrates,49 s howcasing
their s tability under bending and t heir highly s ensitive per-
formance i n s urface-enhanced i nfrared a bsorption s pec-
troscopy sensing applications.

In this study, we present the design and characterization of
a van der Waals heterostructure c omprising graphene nano-
ribbons a nd mica n ano-films. E mploying f ar-field F ourier
transform i nfrared ( FTIR) s pectroscopy, we unveil t he e mer-
gence of hybrid modes arising f rom t he i nteraction between
localized g raphene plasmons a nd i ntrinsic optical phonons
within the mica l attice. The coupling of various mica phonons
with plasmons l eads t o a r ich t apestry of hybrid modes with
distinct characteristics. Notably, we demonstrate t he ability t o
control t he r elative c ontributions o f p honon a nd p lasmon
modes within the hybrid structure by manipulating geometric
features and applying t he gate voltage. When phonon modes
dominate, t he r esulting hybrid modes e xhibit e xceptionally
long l ifetimes a nd s table r esonant f requencies, d isplaying
minimal s ensitivity t o g ate v oltage c ontrol. C onversely,
plasmon-dominated modes exhibit high t unability, s howcas-
ing s ignificant s hifts i n r esonant f requencies u nder g ate
voltage. Particularly, i n cases i nvolving multiple phonon coup-
lings, t he proximity of phonon f requencies restricts f requency
modulation, resulting i n modes with stable resonant f requen-
cies t hat do not shift spectral l ines but exhibit modulation i n
the extinction i ntensity by the gate voltage. Our research high-
lights t he a dvantages o f mica s ubstrates, w hich p rovide
atomic-level f latness, l ong p honon l ifetimes, a nd a dvanced
dielectric f unctionality, offering hybrid modes with attributes
such as high-wavelength confinement, extended l ifetimes, and
a broad f requency r ange. This i nnovative design offers a new
approach t o polariton e xcitation and propagation c ontrol at
deep s ubwavelength s cales, holding s ignificant promise f or
the development of novel nanophotonic sensors and circuits.

Methods
Nanofabrication of the devices

Mica nanofilms were mechanically exfoliated f rom bulk crys-
tals and t hen t ransferred onto t he silica substrate via a deter-
ministic dry t ransfer process with a PDMS stamp by using a
homemade s tage u nder o ptical microscopy.50 Due t o t he
nature o f t his method, t he t hickness o f t he o btained

nanosheets v aried. However, b y s ystematically s creening a 
large number of r andomly exfoliated nanosheets on t he sub-
strate, we managed to obtain a satisfactory batch with relatively
uniform t hickness. For device measurements, we used mica
nanosheets with a t hickness range of 100–300 nm. Graphene
sheets were synthesized on copper foil through chemical vapor
deposition ( CVD) and t ransferred onto t he mica f ilm using a
conventional wet t echnique.51 Nanoribbon arrays ( 100 μm ×
200 μm) were patterned on t he graphene sheet using 100 kV
electron-beam l ithography (EBL) (Vistec 5000 + ES) on approxi-
mately 250 nm of poly ( methyl methacrylate) ( PMMA 950 K)
electron b eam l ithography r esist. T he p atterns were t hen
etched by oxygen plasma e tching a t 5 Pa a nd 7 5 W f or 5 
seconds. Then, t he sample was i mmersed i n hot butanone at
85 ° C f or 30 min and subjected t o a gentle r inse of I PA f or
5 min t o r emove t he r esist l ayer, f ollowed by nitrogen g as
drying a nd t hermal baking. Two s ets o f e lectrode patterns
were defined using another EBL procedure and electron beam
evaporation. Electrode patterns were designed on t he samples
using EBL on approximately 350 nm of PMMA r esist. After
that, electron-beam evaporation was used t o deposit 5 nm Cr
and 60 nm Au i n a vacuum chamber to fabricate the electrode
pads, f ollowed b y a l ift-off p rocedure t o r emove t he r esist
layer.52

Mid-infrared microscopy measurements

Infrared t ransmission measurements were performed using a
Fourier Transform I nfrared ( FTIR) microscope ( Thermo Fisher
Scientific, Nicolet i N10) equipped with a deuterated L -alanine
doped t riglycine sulfate ( DLATGS) I R detector. The microscope
was configured with a high-efficiency 15× objective and conden-
ser, featuring a numerical aperture of 0.7 and an angular range
of 40° to 87°. A 100 × 200 μm aperture was employed to obtain
the spot size. A spectral r esolution of 4 cm−1 w  as used f or all
spectra. Single-beam transmittance spectra were collected at the
charge neutral point as a r eference t o calculate t he extinction
spectra o f t he v arious d oped g raphene n anoribbons ( ESI
Fig. 1†). All measurements were conducted at ambient tempera-
ture and under standard atmospheric conditions.

Results and discussion

To efficiently hybridize plasmon and phonon modes i n gra-
phene/mica heterostructures, we engineered a graphene nano-
ribbon array on a mica s ubstrate ( Fig. 1a–c). The mica s ub-
strate, a pproximately 2 80 nm t hick, was mechanically e xfo-
liated and t ransferred onto a s ilicon s ubstrate. This was f ol-
lowed by the wet transfer of l arge-area graphene onto the sub-
strate t o cover t he mica f ilm. Subsequently, t he graphene was
structured i nto electrically continuous nanoribbon arrays, and
Cr/Au e lectrodes were a pplied t o f acilitate e lectrical a djust-
ment of t he doping l evels of t he graphene nanoribbons ( see
the Methods section for details of the sample fabrication). We
further employed atomic f orce microscopy ( AFM) t o analyse
the morphology of t he f abricated graphene nanoribbons, con-
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firming t heir s ize and uniformity, and evaluating i mpurities
introduced during f abrication. As shown i n Fig. 1c and d, t he
width of the fabricated ribbons is approximately 65 nm, with a
gap width of around 100 nm. Moreover, both t he overall uni-
formity o f t he r ibbons a nd t he c leanliness o f t he s ample
surface demonstrate high quality (ESI Fig. 2†).

Furthermore, electrical property t esting was carried out on
the device. Analysis of Fig. 1e r eveals a gradual decrease i n
channel current with i ncreasing gate voltage, eventually stabi-
lizing at a minimum, with which t he gate voltage hits ∼200
V. This t rend underscores t he efficient dielectric properties of
the mica f ilm as an i nsulating l ayer, f acilitating effective elec-
tron i njection doping i nto graphene. Additionally, t he Dirac
point s hifts t owards s uch high positive v oltages, i ndicating
that our prepared sample manifests significant intrinsic p-type
doping e ffects. T his b ehaviour c an b e a ttributed t o t wo
primary f actors: c harge t ransfer doping of graphene by s ol-
vents d uring t he f abrication p rocess53 a nd c harge-induced
doping of graphene by dangling chemical bonds on t he mica
surface.54,55 Through t hese electrical measurements, we have
pinpointed t he g ate v oltage of 200 V as t he c harge neutral
point ( CNP), w here t he g raphene d oping c oncentration

approaches EF = 0 e V. The CNP f acilitates t he next s tep of
in situ spectroscopic measurements.

Upon characterizing t he basic properties of t he device, we
have f ormally i nitiated a n e xploration o f t he p lasmonic
response of the device. We primarily employed a Fourier trans-
form i nfrared s pectrometer t o i nvestigate t he e xtinction
characteristics of graphene nanoribbon r egions. I nitially, t he
graphene doping was t uned t o approximately z ero ( i.e., near
the CNP), and a s ingle-beam t ransmittance s pectrum, TCNP,
was recorded as the background signal. Subsequently, the gate
voltage was v aried t o gradually i ncrease t he doping c oncen-
tration of graphene, and s ingle-beam t ransmittance s pectra,
Tgate, were consecutively measured f or different doping l evels.
The r esulting extinction s pectrum was t hen calculated using
the f ormula T = 1 − T gate/TCNP ( for d etails o n s pectrum
measurement, refer to the Methods section).

Fig. 2a i llustrates t he modulation of t he e xtinction s pec-
trum of a graphene nanoribbon array with a width of 65 nm
(corresponding to the sample in Fig. 1) in response to changes
in g ate v oltages. I t i s e vident t hat a s t he g ate v oltage i s
decreased gradually, i ndicating an i ncrease i n graphene nano-
ribbon doping, t he overall peak positions of t he e xtinction

Fig. 1 E  xperimental setup. (a) Schematic diagram i llustrating the sample structure and measurement method. Graphene nanoribbons are i ntegrated
with nanometer-thick mica films to create a vdW heterostructure. This structure i s placed on a silicon substrate with metal electrodes positioned on
top. The extinction signal of t he device i s collected using Fourier i nfrared spectroscopy. ( b) Optical i mage of t he sample. The highlighted area
enclosed by the white dashed box denotes the region of graphene nanoribbons. The mica thickness measures ∼280 nm, with the scale bar i ndicat-
ing 200 μm. ( c) Topography of graphene nanoribbons. The ratio of the prepared ribbons to the gaps i s approximately 1 : 1.5. Notably, l arge periodic
ribbons are apparent along the y-axis, providing support for the nanoribbons during preparation and ensuring electrical continuity i n measurement.
The scale bar corresponds to 1 μm. ( d) Height profile of graphene nanoribbons, extracted f rom the white l ine i n panel ( c). ( e) Transfer curve of the
device. During testing, the silicon substrate functions as the back gate, the mica l ayer acts as an effective dielectric l ayer, while the graphene mono-
layer and the areas designated as nanoribbons collectively form the channel.
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spectrum shift t owards higher f requencies, accompanied by a
significant v ariation i n e xtinction i ntensity. T he r esulting
extinction spectrum f orms a complex curve with nine distinct
peaks, differing significantly from that on a SiO2 substrate (ESI
Fig. 3†), each sequentially l abelled as A–I. I n ESI Fig. 4,† we
fabricated another device with a ribbon width of ∼60 nm and
performed spectral measurements. Both devices exhibit well-
defined spectral peaks, demonstrating excellent r eproducibil-
ity. Notably, i n Fig. 2a, peaks A–H display a progressive blue
shift i n position with decreasing v oltage, s howing an i nitial
increase in intensity followed by a decrease, whereas the inten-
sity and position of peak I exhibit a consistent increase.

To f urther i nvestigate t he origins of t hese multiple peaks,
we conducted additional testing on the extinction spectrum of
the mica r egion not c overed by g raphene, a s i llustrated i n
Fig. 2b. The complex band (∼1100 cm−1) is assigned to stretch-
ing S i–O–Si v ibrations.56 T he a bsorption o f t hese p honon
modes overlaps with t he resonance f requency of i ntrinsic gra-
phene plasmons. I t i s noteworthy t hat t he peaks of mica at
this f requency r esult f rom t he c ontributions o f multiple
phonons,56 as evidenced by Lorentzian f itting, and coincided
with previous s tudies.57 Thus, t he c omplex e xtinction s pec-
trum observed is a consequence of the interaction between the
localized plasmons of graphene nanoribbons and the multiple
phonons of the mica nanofilm.

To f urther a nalyse t he p roperties o f t hese modes, we
extracted t heir peak f requency ( Fig. 3a), extinction i ntensities

(Fig. 3b), and FWHM (Fig. 3c). Through the extracted data ana-
lysis, t he A–I peaks can be r oughly classified i nto t hree c at-
egories. The f irst t ype c onsists of peaks with r esonance f re-
quencies f ar f rom mica phonons, where t he c omponents of
graphene plasmons dominate, s uch as peak I . Their origins
resemble t he Fano effect, where graphene plasmons act as a
broad continuous spectrum, while the phonon peaks represent
a narrow discrete s pectrum within i t. The s econd s cenario
involves hybrid modes f ormed when plasmons and phonon
peaks are nearby. I n such cases, due t o t he proximity i n f re-
quencies, a phenomenon s imilar t o plasmon-induced t rans-
parency ( PIT).58 PIT can also be seen as a special case of Fano
resonance, c haracterized by a s ymmetric L orentzian-shaped
peak ( e.g., peaks FGH). I n Fig. 2c, we demonstrate t he results
of f itting t hese complex peak shapes using Lorentzian ( peaks
FGH) and Fano models ( peak I ). Our experimental curves i n
grey align closely with t he red f itting curves. The t hird t ype of
peak i s mainly situated between t hese t wo, such as ( peaks A–
E), where t heir s pectra are not entirely symmetrical, but t he
degree of asymmetry i n the rise and fall of the peaks does not
match t ypical Fano peaks. I n practical f itting, t hese peaks are
closer to Lorentzian peaks.

The I peak i s f lexibly controlled by gate v oltage. I ts r eso-
nance peak c an be c ontinuously t uned f rom 1 150 c m−1 t  o
1300 cm−1. In another sample we prepared, a broader electrical
modulation r ange was achieved, enabling continuous t uning
from 1140 cm−1 to 1360 cm−               1 (  ESI Fig. 4†). I n contrast, t he

Fig. 2 S  pectral collection and fitting. ( a) Extinction spectra of graphene nanoribbon regions under different gate voltages. The voltage difference
(ΔVCNP) between the applied gate voltage and the CNP i ncreases from 10 V to 240 V. Peaks i n the curve are l abeled with l etters A–I. ( b) Measured
infrared absorption spectrum of the mica nanofilm i n t he device ( gray curve). The red curve represents the fitted curve, and the green curve rep-
resents the constituent sub-peaks of t he fitted curve. ( c) Fitting and analysis of t he extinction spectra of hybridized modes i n graphene and mica
vdW heterostructures. The gray l ines represent the experimentally collected original signals. The red l ine represents the fitted curve. The A–H peaks
are from Lorentzian fitting (green), and the I peak i s from Fano fitting (blue).
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positions o f p eaks A , F , G, a nd H s how l ittle v ariation.
Particularly for the F and G modes, their peaks are sandwiched
between other phonon modes, resulting in minimal resonance
frequency s hifts. The r emaining peaks whose r esonant f re-
quencies can be slightly changed, f or example, peak B can be
modulated f rom 7 50 c m−1 t  o 7 90 c m−              1. By o bserving t he
degree t o which t hese peaks can be modulated, we can also
roughly distinguish t hat t he I peak i s predominantly i nflu-
enced by plasmon c omponents, while t he A, F , G, a nd H
phonon modes dominate. The other peaks, B, C, D, and E,
exhibit a more balanced distribution of the two components.

Compared to resonance frequencies, gate voltage tunability
has a more significant impact on the intensity of all the peaks.
As shown i n Fig. 3b, with i ncreasing doping, t he i ntensity of
the I peak gradually rises, with the extinction intensity increas-
ing f rom 0.1% t o 1.2%. The modulation of t he other peaks i s
not a s imple monotonic i ncrease a nd t he i ntensity f irst
increases and t hen decreases. This i s because t he extinction
intensity is constrained by a trade-off of resonance frequencies
and doping c oncentration. The i nitial i ncrease i n extinction
intensity occurs due to carrier injection enhancing the absorp-
tion o f p lasmon modes, while t he s ubsequent decrease i s
attributed t o t he r esonance f requency of graphene plasmons
moving a way f rom t he f requency positions o f t hese hybrid
modes.

The modulation of FWHM follows a similar trend to extinc-
tion i ntensity. With i ncreasing doping, t he FWHM of t he I 
peak gradually i ncreases. This i s attributed to the i nfluence of
plasmons i n t he modes, where higher doping l evels amplify
electron–phonon s cattering a nd e lectron–electron s cattering,
leading to a decrease in the l ifetime of plasmons. This pattern
aligns with o bservations i n S iO2 d ielectric s ubstrates ( ESI
Fig. 3†). Additionally, i t c an be observed t hat t he widths of
hybrid modes are exceptionally narrow, particularly f or t he F
and G p eaks t hat a re d ominated b y p honon modes, with
widths of only over ten wavenumbers. To the best of our knowl-
edge, this may represent the narrowest width observed for plas-
mons in the mid-infrared range.5

Mica i s widely r ecognized f or i ts atomically f lat surface,59

which i s e xpected t o h elp r educe i nterface s cattering a nd
enhance t he l ifetime of graphene plasmons. Additionally, t he
long-lived phonons i n mica can f urther contribute t o extend-
ing t he l ifetime o f h ybrid modes. T herefore, f or a more
thorough quantitative analysis of t he ability of mica substrate
to enhance the l ifetime of graphene plasmons, we further pre-
pared substrates of r egular SiO2 and mica/SiO2 ( as shown i n
Fig. 4 a). On t hese t wo s ubstrates, nanoribbons of different
widths were prepared ( ESI Fig. 5†), corresponding t o different
graphene plasmon wavevectors, a nd e xtinction s pectra were
conducted under t he same ribbon width and doping concen-
tration ( as shown i n Fig. 4b). As the strip width decreases, the
wave vector of t he hybrid plasmon i ncreases, l eading t o a sig-
nificant blue shift of its resonance frequency from 750 cm−1 to
1450 cm−1 o  n the mica substrate.

Similar to the previous description, we can classify the first
two peaks as plasmon-phonon hybrid modes, while identifying
the l ast major peak as a plasmon mode. I t i s evident t hat as
the r ibbon width decreases, corresponding t o an i ncrease i n
wave v ector, t he r esonance f requency of graphene plasmons
shifts t owards t he blue end of t he spectrum r ange. The mica
thickness used i n our experiments i s only ∼100 nm, which i s
one-third of the thickness of the SiO2 substrate. Consequently,
the spectra on t his mica/SiO2 substrate exhibit a significantly
different shape compared t o t hose i n Fig. 2, with t he overall
spectral profile here bearing a closer r esemblance t o t hat of
the SiO2 substrate.

A comparison i ndicates that at different ribbon widths, the
spectra on t he mica substrate exhibit a redshift t owards l ower
frequencies c ompared t o t hose o n t he S iO2 s ubstrate.
Additionally, i n contrast to the plasmon modes, the FWHM of
the plasmon mode at each width i s narrower. Through quanti-
tative analysis, we f urther extracted l ifetimes as depicted i n
Fig. 4c, r evealing t hat t he overall l ifetimes on t he mica s ub-
strate are higher than those on the SiO2 substrate. At a ribbon
width of 180 nm, t he plasmon l ifetimes on both s ubstrates
reach t he maximum value, with t he plasmon l ifetime on t he

Fig. 3 Extinction s pectrum a nalysis. Relationship between t he r esonance f requencies ( a), extinction i ntensities ( b), and t he f ull width at half
maximum (FWHM) (c) of peaks A–I and voltage difference ΔVCNP.
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mica s ubstrate b eing a pproximately 1 .9 p icoseconds, c om-
pared t o around 1.0 picoseconds on t he SiO2 substrate. This
experiment conclusively demonstrates t hat t he mica substrate
serves a s a c rucial p latform f or g raphene p lasmons with
enhanced quality factors.

It s hould be noted here t hat t he difference i n dielectric
function between mica and s ilicon oxide will also affect t he
resonant f requency a nd l ifetime o f g raphene p lasmons. A 
higher dielectric constant l eads t o a r edshift i n t he r esonant
frequency. As t he dielectric c onstant i ncreases, t he r estoring
force acting on t he oscillating charge density of t he plasmon
also strengthens, resulting i n a l ower resonant f requency. The
lifetime of graphene plasmons i s another critical parameter
that i s i nfluenced by t he dielectric c onstant. The plasmonic
quality f actor ( Q) can be decomposed i nto t wo additive com-
ponents:17 an intrinsic component and an environmental com-

ponent, Q�1 ¼ q″p
q′p

� σ′

σ  ′′
þ κ′′

κ  ′
, where q′p and q″p are t he real and

imaginary parts of t he complex momentum of graphene plas-
mons, respectively. σ and κ are t he optical conductivity of gra-
phene and effective permittivity. The l ifetime can be obtained

using τ ¼ 2
q′p
ωq″p

, where ω i s the f requency. The i nherent com-

ponent originates f rom scattering events occurring within t he
graphene l ayer, whereas t he extrinsic component results f rom

energy dissipation to the adjacent dielectric medium. To deter-
mine t he e xtent o f t hese d ielectric l osses, we r equire t he
effective permittivity, which i s given by κ = κ ′(q,ω) + κ ″(q,ω).
The effective dielectric constant considers t he contribution of
the dielectrics above and below t he graphene. At f requencies
exceeding 1580 c m−1, graphene plasmons c an decay by t he
intraband L andau damping r egime, i n which t he plasmon
damping process i s mediated by t he emission of an optical
phonon. This coupling between t he plasmon and t he optical
phonon l attice vibrations l eads t o t he generation of electron–
hole p airs a nd a c onsequent d ecrease i n t he p lasmon
lifetime.43

We have f urther i dentified t he phenomenon of graphene
plasmons s imultaneously c oupling with mica phonons a nd
SiO2 phonons. As i llustrated i n ESI Fig. 6,† despite t he peak
splitting caused by the silicon dioxide phonon at ∼1168 cm−1,
we are still able t o observe t he narrow peak of plasmon coup-
ling with mica phonons. This trilateral coupling phenomenon
in t he graphene plasmon system i s of paramount significance
for t he applications of molecular enhancement, as i t e stab-
lishes a crucial groundwork for analysing mixtures such as the
products o f c atalytic r eactions a nd c omplex b acteria a nd
viruses i n t ears where t he a bsorption p eaks o f molecules
overlap.60 Our highly efficient, electrically r egulated graphene
plasmons a lso h ave t he p otential t o c ouple with i n-plane

Fig. 4 A  nalysis of l ifetime. ( a) Schematic cross-section of device structures. The l ower part shows a device with silicon dioxide covered by mica.
The upper part depicts a conventional device on a silicon dioxide substrate, serving as a control experiment. ( b) Extinction spectra with different
widths of graphene nanoribbons. The blue curves correspond to the extinction spectra of samples on a silicon dioxide substrate, while the brown
curves correspond to those of a mica/silicon dioxide substrate. The l ight background represents a set of contrast experiments with the same widths
and doping concentrations of graphene nanoribbons. (c) Relationship between hybrid mode l ifetime and the width of graphene nanoribbons.
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bending hyperbolic phonon polaritons, advancing the develop-
ment of Mach–Zehnder electro-optic modulators.51,61

We determined t he dielectric f unction of mica by Lorentz
fitting i ts a bsorption s pectrum a nd u sed t his f unction i n
COMSOL Multiphysics s imulations t o model t he e xtinction
spectra f rom t he c oupling between graphene plasmons and
mica ( ESI Note 1†). The discrepancies between our theoretical
and e xperimental r esults c an be a ttributed t o t he c omplex
phonon modes of mica, which become more i ntricate when
coupled with g raphene plasmons. Notably, we have not y et
fully r esolved all t he phonon modes of mica, especially t he
longitudinal o nes, which a re perpendicular t o t he f ar-field
direction and c hallenging t o detect directly. These phonons
couple with graphene plasmons, resulting in complex peaks in
the Fourier transform infrared spectrum.

Conclusions

We have engineered a van der Waals heterostructure consisting
of graphene nanoribbons and nanometer-thick mica films and
identified hybrid modes of c oupling between l ocalized g ra-
phene p lasmons a nd mica o ptical p honons using f ar-field
Fourier infrared spectroscopy. The coupling of multiple optical
phonons i n mica with plasmons has given rise t o a variety of
hybrid modes with distinct c haracteristics. By manipulating
the gate voltage doping and varying geometric structures, we
have managed t o r egulate t he proportion of phonon modes
and plasmon modes within t he hybrid modes. I n s cenarios
where phonons are predominant, the modes exhibit prolonged
lifetimes a nd s table r esonance f requencies t hat a re l ess
responsive to gate voltage adjustments. Conversely, when plas-
mons take the lead, the modes become more tunable, allowing
for s ignificant alterations i n r esonance f requencies. I n s itu-
ations i nvolving multiple phonon couplings, t he modulation
capabilities of phonons i n close proximity r estrict f requency
shifts, l eading t o modes where resonance f requencies remain
unchanged, r esulting i n unique modes only with t he extinc-
tion intensity controlled by the gate voltage. Our study demon-
strates that mica substrates offer precise atomic-level f latness,
extended phonon l ifetimes, and superior dielectric properties,
enabling hybrid modes with attributes such as highly confined
wavelengths, enduring l ifespans, and broad f requency ranges.
These c haracteristics present promising prospects f or appli-
cations like chemical sensing and integrated photonic devices.
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